[structure: see text] Novel colorimetric receptors for selective fluoride ion sensing containing anthraquinone as chromogenic signaling subunit and urea (N,N' '-(9,10-dihydro-9,10-dioxo-1,2-anthracenediyl)bis[N'-phenyl])/thiourea (N,N' '-(9,10-dihydro-9,10-dihydro-9,10-dioxo-1,2-antrhacenediyl)bis[N-phenyl]) binding sites have been reported. These receptors have shown no affinity for other halide ions (Cl-, Br-, and I- ions). Well-defined color change in the visible region of the spectrum was observed upon addition of fluoride ion in DMSO/CH3CN solution of the receptors 1 and 2.
We report two ruthenium(II) polypyridyl complexes with pendant phenol/catechol functionality that act as colorimetric sensors for fluoride ions. Experiments have revealed that hydrogen bond formation occurs with a slight excess of fluoride ion. However, in higher [F-], deprotonation of the O-H functionality resulted. Time-dependent (TD-DFT) calculations at the B3LYP/LANL2DZ level have shown that new bands appear at longer wavelengths upon complexation with fluoride ions. These are of mixed character, MLCT (dpi(Ru)-->pi*(L1/bpy)), and intra- and interligand [pi(L1)-->pi*(bpy) and pi(L1)-->pi*(L1)] transitions. These complexes also act as sensors for fluoride ions in solvent-water mixtures.
Organic salts based on dicyclohexylamine and substituted/unsubstituted cinnamic acid exhibit efficient gelation of organic fluids, including selective gelation of oil from an oil/water mixture. Among the cinnamate salts, dicyclohexylammonium 4-chlorocinnamate (1), 3-chlorocinnamate (2), 4-bromocinnamate (3), 3-bromocinnamate (4), 4-methylcinnamate (5) and the parent cinnamate (6) are gelators, whereas 2-chlorocinnamate (7), 2-bromocinnamate (8), 3-methylcinnamate (9), 2-methylcinnamate (10) and hydrocinnamate (11) are non-gelators. Non-gelation behaviour of 11 and various benzoate derivatives 12-18 indicate the significance of an unsaturated backbone in the gelation behaviour of the cinnamate salts. A structure-property correlation based on the single-crystal structures of most of the gelators (1, 3, 5 and 6) and non-gelators, such as 7, 8, 10-18, indicates that the prerequisite for the one-dimensional (1D) growth of the gel fibrils is mainly governed by the 1D hydrogen-bonded network involving the ion pair. All the non-gelators show either two- (2D) or zero-dimensional (0D) hydrogen-bonded assemblies involving the ion pair. The molecular packing of the fibres in the xerogels of 1, 3, 5 and 6 has also been established on the basis of their simulated powder diffraction patterns, XRPD of bulk solids and xerogels. Ab initio quantum chemical calculations suggests that pi-pi interactions is not a contributing factor in the gelation process.
We report a tren-based tris(urea) receptor molecule that shows preferential binding with sulfate/phosphate anions. The receptor acts as a neutral molecular capsule, within which a unique sulfate-(H(2)O)(3)-sulfate adduct is encapsulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.