Aims/introductionDue to the heterogeneous nature of type 2 diabetes mellitus and its complex effects on hemodynamics, there is a need to identify new candidate markers which are involved in the development of type 2 diabetes mellitus (DM) and can serve as potential targets. As the global diabetes prevalence in 2019 was estimated as 9.3% (463 million people), rising to 10.2% (578 million) by 2030 and 10.9% (700 million) by 2045, the need to limit this rapid prevalence is of concern. The study aims to identify the possible biomarkers of type 2 diabetes mellitus with the help of the system biology approach using R programming.Materials and methodsSeveral target proteins that were found to be associated with the source genes were further curated for their role in type 2 diabetes mellitus. The differential expression analysis provided 50 differentially expressed genes by pairwise comparison between the biologically comparable groups out of which eight differentially expressed genes were short-listed. These DEGs were as follows: MCL1, PTX3, CYP3A4, PTGS1, SSTR2, SERPINA3, TDO2, and GALNT7.ResultsThe cluster analysis showed clear differences between the control and treated groups. The functional relationship of the signature genes showed a protein–protein interaction network with the target protein. Moreover, several transcriptional factors such as DBX2, HOXB7, POU3F4, MSX2, EBF1, and E4F1 showed association with these identified differentially expressed genes.ConclusionsThe study highlighted the important markers for diabetes mellitus that have shown interaction with other proteins having a role in the progression of diabetes mellitus that can serve as new targets in the management of DM.
In an attempt to find new targets for α-amylase and α-glucosidase for the treatment of type 2 diabetes mellitus, the present study aims in determining the anti-diabetic potential of synthesized dihydropyrimidinone derivatives. The in vitro α-glucosidase and α-amylase inhibitory activity was performed and the molecular docking analysis of the ligand in the active binding site of target protein was determined. The results revealed significant percent inhibition of α-glucosidase by the compound 6-benzyl-4-(4-hydroxyphenyl)-3,4,6,7-tetrahydro-1H-pyrrolo[3,4-d]pyrimidine-2,5-dione (compound A). The active compound showed 81.99% inhibition when compared to standard ascorbic acid having percent inhibition 81.18%. The IC50 of active compound (A) showed to be 1.02 µg/ml. The molecular docking analysis revealed that the ligand bound to the active binding site of protein with the lowest binding energy of -7.9 kcal/mol that was also significantly similar to standard having -7.8 kcal/mol binding energy. The molecular dynamic simulation studies also revealed stable binding of ligand in the active binding site of protein with low RMSD of 1.7 Å similar to the protein RMSD 1.6Å In conclusion, the study revealed a potential new target against α-glucosidase to treat type 2 diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.