In this article, three numerical methods namely Euler’s, Modified Euler, and Runge-Kutta method have been discussed, to solve the initial value problem of ordinary differential equations. The main goal of this research paper is to find out the accurate results of the initial value problem (IVP) of ordinary differential equations (ODE) by applying the proposed methods. To achieve this goal, solutions of some IVPs of ODEs have been done with the different step sizes by using the proposed three methods, and solutions for each step size are analyzed very sharply. To ensure the accuracy of the proposed methods and to determine the accurate results, numerical solutions are compared with the exact solutions. It is observed that numerical solutions are best fitted with exact solutions when the taken step size is very much small. Consequently, all the proposed three methods are quite efficient and accurate for solving the IVPs of ODEs. Error estimation plays a significant role in the establishment of a comparison among the proposed three methods. On the subject of accuracy and efficiency, comparison is successfully implemented among the proposed three methods.
There exist numerous numerical methods for solving the initial value problems of ordinary differential equations. The accuracy level and computational time are not the same for all of these methods. In this article, the Modified Euler method has been discussed for solving and finding the accurate solution of Ordinary Differential Equations using different step sizes. Approximate Results obtained by different step sizes are shown using the result analysis table. Some problems are solved by the proposed method then approximated results are shown graphically compare to the exact solution for a better understanding of the accuracy level of this method. Errors are estimated for each step and are represented graphically using Matlab Programming Language and MS Excel, which reveals that so much small step size gives better accuracy with less computational error. It is observed that this method is suitable for obtaining the accurate solution of ODEs when the taken step sizes are too much small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.