Covalent organic framework (COF) based membranes hold great promise for organic solvent nanofiltration (OSN) due to their unique molecular arrangement, well-defined porous network, and broader solvent tolerance. However, scaling up...
The present work deals with the biosorption performance of raw and chemically modified biomass of the brown seaweed Lobophora variegata for removal of Cd(II) and Pb(II) from aqueous solution. The biosorption capacity was significantly altered by pH of the solution delineating that the higher the pH, the higher the Cd(II) and Pb(II) removal. Kinetic and isotherm experiments were carried out at the optimal pH 5.0. The metal removal rates were conspicuously rapid wherein 90% of the total sorption occurred within 90 min. Biomass treated with CaCl(2) demonstrated the highest potential for the sorption of the metal ions with the maximum uptake capacities i.e. 1.71 and 1.79 mmol g(-1) for Cd(II) and Pb(II), respectively. Kinetic data were satisfactorily manifested by a pseudo-second order chemical sorption process. The process mechanism consisting of both surface adsorption and pore diffusion was found to be complex. The sorption data have been analyzed and fitted to sorption isotherm of the Freundlich, Langmuir, and Redlich-Peterson models. The regression coefficient for both Langmuir and Redlich-Peterson isotherms were higher than those secured for Freundlich isotherm implying that the biosorption system is possibly monolayer coverage of the L. variegata surface by the cadmium and lead ions. FT-IR studies revealed that Cd(II) and Pb(II) binding to L. variegata occurred primarily through biomass carboxyl groups accompanied by momentous interactions of the biomass amino and amide groups. In this study, we have observed that L. variegata had maximum biosorption capacity for Cd(II) and Pb(II) reported so far for any marine algae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.