Mosquitoes are of major importance to human and animal health due to their ability to transmit various pathogens. In Europe the role of mosquitoes in public health has increased with the introduction of alien Aedes mosquitoes such as the Asian tiger mosquito, Aedes albopictus; the Asian bush mosquito, Ae. japonicus; and Ae. koreicus. In Austria, Ae. japonicus has established populations in various regions of the country. Aedes albopictus is not known to overwinter in Austria, although isolated findings of eggs and adult female mosquitoes have been previously reported, especially in Tyrol. Aedes koreicus had not so far been found in Austria. Within the framework of an alien mosquito surveillance program in the Austrian province of Tyrol, ovitraps were set up weekly from May to October, 2018, at 67 sites-17 in East Tyrol and 50 in North Tyrol. Sampling was performed at highways and at urban and rural areas. DNA obtained from mosquito eggs was barcoded using molecular techniques and sequences were analysed to species level. Eggs of alien Aedes species were found at 18 out of 67 sites (27%). Both Ae. albopictus and Ae. japonicus were documented at highways and urban areas in both East and North Tyrol. Aedes koreicus was found in East Tyrol. During this mosquito surveillance program, eggs of Ae. albopictus, Ae. japonicus, and Ae. koreicus were documented in the Austrian province of Tyrol. These findings not only show highways to be points of entry, but also point to possible establishment processes of Ae. japonicus in Tyrol. Moreover, Ae. koreicus was documented in Austria for the first time.
Systematic, continuous mosquito surveillance is considered the most reliable tool to predict the spread and establishment of alien mosquito species such as the Asian tiger mosquito (
Aedes albopictus
), Japanese bush mosquito (
Aedes japonicus
), and the transmission risk of mosquito-borne arboviruses to humans. Only single individuals of
Ae. albopictus
have been found in Austria so far. However, it is likely that the species will be able to establish populations in the future due to global trade and traffic as well as increasing temperatures in the course of global climate change. In summer 2017, a project surveilling the oviposition of newly introduced
Aedes
mosquitoes, using ovitraps, was set up by means of citizen scientists and researchers and was performed in six federal provinces of Austria—Tyrol, Carinthia, Vienna, Lower Austria, Styria, and Burgenland. Eggs of
Ae. albopictus
were identified in Tyrol during the months August and September, while
Ae. japonicus
was found in Lower Austria, Styria, and Burgenland. In Vienna and Carinthia, all ovitraps were negative for
Aedes
eggs; however,
Ae. japonicus
was found for the first time in Vienna in July 2017 during routine sampling of adult mosquitoes. With this project, we demonstrated the benefits of citizen scientists for ovitrap-based mosquito surveillance. The finding of
Ae. albopictus
eggs in Northern Tyrol is not yet a proof of the establishment of a self-sustaining population, although it indicates the ongoing introduction of this species along main traffic routes from Italy, where this mosquito is well established. The risk of establishment of the tiger mosquito in the Lower Inn Valley is therefore a given and informing the public about preventive measures to hinder and delay this development is highly recommended.
Ceratopogonidae are small nematoceran Diptera with a worldwide distribution, consisting of more than 5400 described species, divided into 125 genera. The genus Culicoides is known to comprise hematophagous vectors of medical and veterinary importance. Diseases transmitted by Culicoides spp. Such as African horse sickness virus, Bluetongue virus, equine encephalitis virus (Reoviridae) and Schmallenberg virus (Bunyaviridae) affect large parts of Europe and are strongly linked to the spread and abundance of its vectors. However, Culicoides surveillance measures are not implemented regularly nor in the whole of Austria. In this study, 142 morphologically identified individuals were chosen for molecular analyses (barcoding) of the mitochondrial cytochrome c oxidase subunit I gene (mt COI). Molecular analyses mostly supported previous morphologic identification. Mismatches between results of molecular and morphologic analysis revealed three new Culicoides species in Austria, Culicoides gornostaevae Mirzaeva, 1984, which is a member of the Obsoletus group, C. griseidorsum Kieffer, 1918 and C. pallidicornis Kieffer, 1919 as well as possible cryptic species. We present here the first Austrian barcodes of the mt COI region of 26 Culicoides species and conclude that barcoding is a reliable tool with which to support morphologic analysis, especially with regard to the difficult to identify females of the medically and economically important genus Culicoides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.