Multiple choice questions (MCQs) are widely used in digital learning systems, as they allow for automating the assessment process. However, due to the increased digital literacy of students and the advent of social media platforms, MCQ tests are widely shared online, and teachers are continuously challenged to create new questions, which is an expensive and time-consuming task. A particularly sensitive aspect of MCQ creation is to devise relevant distractors, i.e., wrong answers that are not easily identifiable as being wrong. This paper studies how a large existing set of manually created answers and distractors for questions over a variety of domains, subjects, and languages can be leveraged to help teachers in creating new MCQs, by the smart reuse of existing distractors. We built several data-driven models based on context-aware question and distractor representations, and compared them with static feature-based models. The proposed models are evaluated with automated metrics and in a realistic user test with teachers. Both automatic and human evaluations indicate that context-aware models consistently outperform a static feature-based approach. For our best-performing context-aware model, on average 3 distractors out of the 10 shown to teachers were rated as high-quality distractors. We create a performance benchmark, and make it public, to enable comparison between different approaches and to introduce a more standardized evaluation of the task. The benchmark contains a test of 298 educational questions covering multiple subjects & languages and a 77k multilingual pool of distractor vocabulary for future research.
This paper describes IDLab's text classification systems submitted to Task A as part of the CLPsych 2019 shared task. The aim of this shared task was to develop automated systems that predict the degree of suicide risk of people based on their posts on Reddit. 1 Bagof-words features, emotion features and postlevel predictions are used to derive user-level predictions. Linear models and ensembles of these models are used to predict final scores. We find that predicting fine-grained risk levels is much more difficult than flagging potentially at-risk users. Furthermore, we do not find clear added value from building richer ensembles compared to simple baselines, given the available training data and the nature of the prediction task.
Natural language processing technology has made significant progress in recent years, fuelled by increasingly powerful general language models. This has also inspired a sizeable body of work targeted specifically towards the educational domain, where the creation of questions (both for assessment and practice) is a laborious/expensive effort. Thus, automatic question-generation (QG) solutions have been proposed and studied. Yet, according to a recent survey of the educational QG community's progress, a common baseline dataset unifying multiple domains and question forms (e.g., multiple choice vs. fillthe-gap), including readily available baseline models to compare against, is largely missing. This is the gap we aim to fill with this paper. In particular, we introduce a high-quality dataset in the educational domain, containing over 3,000 entries, comprising (i) multiple-choice questions, (ii) the corresponding answers (including distractors), and (iii) associated passages from the course material used as sources for the questions. Each question is phrased in two forms, normal and cloze (i.e., fill-the-gap), and correct answers are linked to source documents with sentence-level annotations. Thus, our versatile dataset can be used for both question and distractor generation, as well as to explore new challenges such as question format conversion. Furthermore, 903 questions are accompanied by their cognitive complexity level as per Bloom's taxonomy. All questions have been generated by educational experts rather than crowd workers to ensure they are maintaining educational and learning standards. Our analysis and experiments suggest distinguishable differences between our dataset and commonly used ones for question generation for educational purposes. We believe this new dataset can serve as a valuable resource for research and evaluation in the educational domain. The dataset and baselines are made available to support further research in question generation for education (https:// github.com/hadif ar/question-generation).INDEX TERMS Natural language processing, question generation, multiple-choice questions, transfer learning.
Large annotated corpora for coreference resolution are available for few languages. For machine translation, however, strong black-box systems exist for many languages. We empirically explore the appealing idea of leveraging such translation tools for bootstrapping coreference resolution in languages with limited resources. Two scenarios are analyzed, in which a large coreference corpus in a high-resource language is used for coreference predictions in a smaller language, i.e., by machine translating either the training corpus, or the test data. In our empirical evaluation of coreference resolution using the two scenarios on several medium-resource languages, we find no improvement over monolingual baseline models. Our analysis of the various sources of error inherent to the studied scenarios, reveals that in fact the quality of contemporary machine translation tools is the main limiting factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.