Activated carbon is greatly used to adsorb toxic heavy metals from water bodies. Simultaneous removal of such pollutants and pathogenic impurities is essential for safe drinking water. In this study, silver nanoparticles (NPs) doped activated carbon (AC) composite was fabricated via hydrothermal technique and green synthesis technique using commercial activated carbon powder and silver nitrate solution. Several analytical techniques, including scanning electron microscopy (SEM), energy dispersive x-ray (EDX), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of silver nanoparticles on the surface and pores of AC. The prepared composite materials were accessed for their anti-bacterial property using Escherichia coli and Staphylococcus aureus and found that such materials have good antibacterial activity which shows that as fabricated composite can be used potentially for water treatment.
Porous activated carbon (AC) and magnetic iron oxide nanoparticles (NPs) are widely used for the removal of arsenic from water body. Fabrication of composite material of iron oxide NPs on the surface of porous AC can further enhance this activity for commercial application. In this research, a magnetic AC composite for arsenic adsorption was prepared by facile hydrothermal treatment of aqueous solution containing activated carbon obtained from lapsi seed stone, iron(II) chloride, polyvinylpyrrolidone (PVP) and ethanol. Several analytical techniques such as scanning electron microscopy (SEM), energy dispersive x-ray (EDX), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of magnetite (Fe3O4) nanoparticles on the surface of porous AC. The prepared materials were accessed for their arsenic adsorption capacity using arsenic (III) trioxide solution and found that composite Fe2O3/AC can remove the arsenic from water far more effectively than activated carbon alone. For 0.5 g/ltr loading of composite sample with contract time of 5 hours, the arsenic content was significantly reduced, which shows that as-fabricated composite can be used potentially for water treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.