Glyphosate-based herbicide products are the most widely used broad-spectrum herbicides in the world for postemergent weed control. There are ever-increasing concerns that glyphosate, if not used judiciously, may cause adverse nontarget impacts in agroecosystems. The purpose of this brief review is to present and discuss the state of knowledge with respect to its persistence in the environment, possible effects on crop health, and impacts on crop nutrition.
Glyphosate-based herbicide products are the most widely used broad-spectrum herbicides in the world for post-emergent weed control. There are ever-increasing concerns that glyphosate, if not used judiciously, may cause adverse non-target impacts in agroecosystems. The purpose of this brief review is to present and discuss the state of knowledge with respect to its persistence in the environment, possible effects on crop health, and impacts on crop nutrition.
Chemical weed control using herbicide glyphosate to manage emerged weeds is an important production practice in Florida citrus. Despite the extensive use of glyphosate in citrus orchards, very limited information is available on its environmental fate and behavior in Florida soils that are predominantly sandy in nature. Hence, the study’s objective was to understand the adsorption-desorption, dissipation dynamics, and vertical movement or leaching of glyphosate in sandy soils in citrus orchards. Laboratory, field, and greenhouse experiments were conducted at Southwest Florida Research and Education Center in Immokalee, Florida. The adsorption-desorption behavior of glyphosate in the soils from three major citrus production areas in Florida was studied utilizing a batch equilibrium method. The dissipation of glyphosate was tracked in the field following its application at the rate of 4.20 kg ae ha−1. Soil leaching columns in greenhouse conditions were used to study the vertical movement of glyphosate. The results suggest that glyphosate has a relatively lower range of adsorption or binding (Kads = 14.28–30.88) in the tested soil types. The field dissipation half-life (DT50) of glyphosate from surface soil was found to be ∼26 days. Glyphosate moved vertically or leached into the soil profile, up to 40 cm in the soil column, when analyzed 40 days after herbicide application. The primary degradation product of glyphosate, i.e., aminomethyl phosphonic acid (AMPA), was also detected up to the depth of 30 cm below the soil surface, indicating the presence of microbial metabolism of glyphosate in the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.