Phenotyping is one of the most important processes in modern breeding, especially for maize, which is an important crop for food, feeds, and industrial uses. Breeders invest considerable time in identifying genotypes with high productivity and stress tolerance. Plant spacing plays a critical role in determining the yield of crops in production settings to provide useful management information. In this study, we propose an automated solution using unmanned aerial vehicle (UAV) imagery and deep learning algorithms to provide accurate stand counting and plant-level spacing variabilities (PSV) in order to facilitate the breeders’ decision making. A high-resolution UAV was used to train three deep learning models, namely, YOLOv5, YOLOX, and YOLOR, for both maize stand counting and PSV detection. The results indicate that after optimizing the non-maximum suppression (NMS) intersection of union (IoU) threshold, YOLOv5 obtained the best stand counting accuracy, with a coefficient of determination (R2) of 0.936 and mean absolute error (MAE) of 1.958. Furthermore, the YOLOX model subsequently achieved an F1-score value of 0.896 for PSV detection. This study shows the promising accuracy and reliability of processed UAV imagery for automating stand counting and spacing evaluation and its potential to be implemented further into real-time breeding decision making.
Potato growth depends largely on nitrogen (N) availability in the soil. However, the shallow-root crop coupled with its common cultivation in coarse-textured soils leads to its poor N use efficiency. Fast and accurate estimations of potato tissue N concentrations are urgently needed to assist the decision making in precision fertilization management. Remote sensing has been utilized to evaluate the potato N status by correlating spectral information with lab tests on leaf N concentrations. In this study, a systematic comparison was conducted to quantitatively evaluate the performance of hyperspectral and multispectral images in estimating the potato N status, providing a reference for the trade-off between sensor costs and performance. In the experiment, two potato varieties were planted under four fertilization rates with replicates. UAV images were acquired multiple times during the season with a narrow-band hyperspectral imager. Multispectral reflectance was simulated by merging the relevant narrow bands into broad bands to mimic commonly used multispectral cameras. The whole leaf total N concentration and petiole nitrate-N concentration were obtained from 160 potato leaf samples. A partial least square regression model was developed to estimate the two N status indicators using different groups of image features. The best estimation accuracies were given by reflectance of the full spectra with 2.2 nm narrow, with the coefficient of determination (R2) being 0.78 and root mean square error (RMSE) being 0.41 for the whole leaf total N concentration; while, for the petiole nitrate-N concentration, the 10 nm bands had the best performance (R2 = 0.87 and RMSE = 0.13). Generally, the model performance decreased with an increase of the spectral bandwidth. The hyperspectral full spectra largely outperformed all three multispectral cameras, but there was no significant difference among the three brands of multispectral cameras. The results also showed that spectral bands in the visible regions (400–700 nm) were the most highly correlated with potato N concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.