High-resolution image transmission is required in safety helmet detection problems in the construction industry, which makes it difficult for existing image detection methods to achieve high-speed detection. To overcome this problem, a novel super-resolution (SR) reconstruction module is designed to improve the resolution of images before the detection module. In the super-resolution reconstruction module, the multichannel attention mechanism module is used to improve the breadth of feature capture. Furthermore, a novel CSP (Cross Stage Partial) module of YOLO (You Only Look Once) v5 is presented to reduce information loss and gradient confusion. Experiments are performed to validate the proposed algorithm. The PSNR (peak signal-to-noise ratio) of the proposed module is 29.420, and the SSIM (structural similarity) reaches 0.855. These results show that the proposed model works well for safety helmet detection in construction industries.
The degrading of input images due to the engineering environment decreases the performance of helmet detection models so as to prevent their application in practice. To overcome this problem, we propose an end-to-end helmet monitoring system, which implements a super-resolution (SR) reconstruction driven helmet detection workflow to detect helmets for monitoring tasks. The monitoring system consists of two modules, the super-resolution reconstruction module and the detection module. The former implements the SR algorithm to produce high-resolution images, the latter performs the helmet detection. Validations are performed on both a public dataset as well as the realistic dataset obtained from a practical construction site. The results show that the proposed system achieves a promising performance and surpasses the competing methods. It will be a promising tool for construction monitoring and is easy to be extended to corresponding tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.