Background Tamoxifen (TAM) and Toremifene (TOR), two kinds of selective estrogen receptor modulators (SERMs), have equal efficacy in breast cancer patients. However, TAM has been proved to affect serum lipid profiles and cause fatty liver disease. The study aimed to compare the effects of TAM and TOR on fatty liver development and lipid profiles. Methods This study performed a retrospective analysis of 308 SERMs-treated early breast cancer patients who were matched 1:1 based on propensity scores. The follow-up period was 3 years. The primary outcomes were fatty liver detected by ultrasonography or computed tomography (CT), variation in fibrosis indexes, and serum lipid profiles change. Results The cumulative incidence rate of new-onset fatty liver was higher in the TAM group than in the TOR group (113.2 vs. 67.2 per 1000 person-years, p < 0.001), and more severe fatty livers occurred in the TAM group (25.5 vs. 7.5 per 1000 person-years, p = 0.003). According to the Kaplan-Meier curves, TAM significantly increased the risk of new-onset fatty liver (25.97% vs. 17.53%, p = 0.0243) and the severe fatty liver (5.84% vs. 1.95%, p = 0.0429). TOR decreased the risk of new-onset fatty liver by 45% (hazard ratio = 0.55, p = 0.020) and showed lower fibrotic burden, independent of obesity, lipid, and liver enzyme levels. TOR increased triglycerides less than TAM, and TOR increased high-density lipoprotein cholesterol, while TAM did the opposite. No significant differences in total cholesterol and low-density lipoprotein cholesterol are observed between the two groups. Conclusions TAM treatment is significantly associated with more severe fatty liver disease and liver fibrosis, while TOR is associated with an overall improvement in lipid profiles, which supports continuous monitoring of liver imaging and serum lipid levels during SERM treatment.
Introduction: Gene expression association studies of tumor samples have uncovered several long non-coding RNAs (lncRNAs) closely related to various types of cancer. Several lncRNAs have been reported to play essential roles in the progression of papillary thyroid carcinoma (PTC). Novel lncRNA inhibiting proliferation and metastasis (lnc-NLIPMT) is a known regulator of mammary cell proliferation and motility, but its involvement in PTC is unclear. Materials and Methods: We investigated the role of lnc-NLIPMT in PTC by quantitative real-time polymerase chain reaction (qRT-PCR) on various PTC tissue samples and cell lines. We assessed the effects of overexpression or knockdown of lnc-NLIPMT on the proliferation, migration, and invasion of PTC cells using CCK-8, cell clone formation, and transwell assays. Changes in the expression of N-cadherin and vimentin were detected by immunoblotting. Results: Our results revealed a downregulation of the expression of lnc-NLIPMT in PTC and a negative correlation between lnc-NLIPMT expression and tumor size (P=0.006). Overexpression of lnc-NLIPMT in TPC-1 and B-CPAP cells significantly suppressed cell proliferation, migration, and invasion, while lnc-NLIPMT knockdown had the opposite effect. In addition, lnc-NLIPMT played an important role in the regulation of the expression of N-cadherin and vimentin. Conclusion: lnc-NLIPMT inhibits cell proliferation and metastasis of PTC cells and is a potential diagnostic and prognostic biomarker in PTC.
Glioma is a common malignacy of the brain that affects elderly patients in particular. Despite treatment, however, the survival rate is 12 months. The aim of the present study was to examine the therapeutic effect of neural progenitor cells (NPCs) on a glioma murine model, and to determine the possible mechanism of action. A glioma murine model was constructed and the tumor volume and tumor growth rate were measured. The therapeutic effect of cell injection on the glioma mouse model mice was confirmed. The quantitative polymerase chain reaction method was used to detect the expression of proto-oncogene and tumor suppressor gene. Intracranial injection of NPCs was performed to determine cell apoptosis. Preliminary results showed the mechanism of cell therapy effect at the transcription and cellular level. Compared with the model group, the tumor volume of the mice of the cell therapy group was significantly reduced from the 6th to 8th week, and the tumor growth rate was downregulated. The mechanism of action identified that NPCs regulate gene expression in tumor tissues, increase the expression of tumor suppressor gene, downregulate the gene expression of tumor cells, and reverse the proto-oncogene and imbalance of gene expression in gliomas. In conclusion, the new type of cell injection method can regulate the proto-oncogene of tumor tissue and tumor suppressor gene, improve the function phenotype of the cell, and effectively improve the clinical symptoms of mice with gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.