Expansins, a group of cell wall-loosening proteins, are involved in cell-wall loosening and cell enlargement in a pH-dependent manner. According to previous study, they were involved in plant growth and abiotic stress responses. However, information on the biological function of the expansin gene in moso bamboo is still limited. In this study, we identified a total of 82 expansin genes in moso bamboo, clustered into four subfamilies (α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA) and expansin-like B (EXPB)). Subsequently, the molecular structure, chromosomal location and phylogenetic relationship of the expansin genes of Phyllostachys edulis (PeEXs) were further characterized. A total of 14 pairs of tandem duplication genes and 31 pairs of segmented duplication genes were also identified, which may promote the expansion of the expansin gene family. Promoter analysis found many cis-acting elements related to growth and development and stress response, especially abscisic acid response element (ABRE). Expression pattern revealed that most PeEXs have tissue expression specificity. Meanwhile, the expression of some selected PeEXs was significantly upregulated mostly under abscisic acid (ABA) and polyethylene glycol (PEG) treatment, which implied that these genes actively respond to expression under abiotic stress. This study provided new insights into the structure, evolution and function prediction of the expansin gene family in moso bamboo.
Moso bamboo (Phyllostachys edulis) is the most important monopodial bamboo species worldwide. Without a genetic transformation system, it is difficult to verify the functions of genes controlling important traits and conduct molecular breeding in moso bamboo. Here, we established a plant regeneration system from immature embryos. Calli were induced on MS medium added 4–6 mg⋅L–1 2,4-dichlorophenoxyacetic acid (2,4-D) with high efficiency (>60%). A plant growth regulator combination of 0.5 mg⋅L–1 1-naphthylacetic acid (NAA), 2.0 mg⋅L–1 6-benzylaminopurine (BAP), and 3.0 mg⋅L–1 zeatin (ZT) was suitable for shoot differentiation, and the shoot induction frequency was increased to 43% after 0.5 mg⋅L–1 abscisic acid (ABA) pretreatment. An effective antibiotic screening concentration was determined by hygromycin sensitivity test. We further optimized the Agrobacterium concentration and added vacuum infiltration for infection, which improves the transient expression efficiency. A genetic transformation system was established for the first time in moso bamboo, with the transformation efficiency of approximately 5%. To optimize genome editing, two endogenous U3 small nuclear RNA (snRNA) promoters were isolated and used to drive small guide RNA (sgRNA) expression. The results showed that the PeU3.1 promoter exhibited higher efficiency, and it was used for subsequent genome editing. Finally, homozygous pds1pds2 mutants were obtained by an efficient CRISPR/Cas9 genome-editing system. These technical systems will be conducive to gene functional validation and accelerate the molecular breeding process of moso bamboo.
Ma bamboo (Dendrocalamus latiflorus Munro) is the most widely cultivated clumping bamboo in Southern China and is valuable for both consumption and wood production. The development of bamboo shoots involving the occurrence of lateral buds is unique, and it affects both shoot yield and the resulting timber. Plant-specific TCP transcription factors are involved in plant growth and development, particularly in lateral bud outgrowth and morphogenesis. However, the comprehensive information of the TCP genes in Ma bamboo remains poorly understood. In this study, 66 TCP transcription factors were identified in Ma bamboo at the genome-wide level. Members of the same subfamily had conservative gene structures and conserved motifs. The collinear analysis demonstrated that segmental duplication occurred widely in the TCP transcription factors of Ma bamboo, which mainly led to the expansion of a gene family. Cis-acting elements related to growth and development and stress response were found in the promoter regions of DlTCPs. Expression patterns revealed that DlTCPs have tissue expression specificity, which is usually highly expressed in shoots and leaves. Subcellular localization and transcriptional self-activation experiments demonstrated that the five candidate TCP proteins were typical self-activating nuclear-localized transcription factors. Additionally, the transcriptome analysis of the bamboo shoot buds at different developmental stages helped to clarify the underlying functions of the TCP members during the growth of bamboo shoots. DlTCP12-C, significantly downregulated as the bamboo shoots developed, was selected to further verify its molecular function in Arabidopsis. The DlTCP12-C overexpressing lines exhibited a marked reduction in the number of rosettes and branches compared with the wild type in Arabidopsis, suggesting that DlTCP12-C conservatively inhibits lateral bud outgrowth and branching in plants. This study provides useful insights into the evolutionary patterns and molecular functions of the TCP transcription factors in Ma bamboo and provides a valuable reference for further research on the regulatory mechanism of bamboo shoot development and lateral bud growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.