A free convective flow of an incompressible and electrically conducting fluid through a vertical micro-channel of rectangular geometry was considered. Both plates were porous and heated alternately. A transverse magnetic field was applied across the channel. One channel wall surface was no slip and the other was super-hydrophobic. The purpose of the study is to examine the effects of super-hydrophobicity, magnetism and wall porosity on the main characteristics of the flow. The exact solutions of the formulated differential equations were provided. A few highlights of the results obtained include: (1) the magnetic parameter lowered the skin friction at both surfaces when either of them were heated, (2) the suction/injection parameter raised the fluid temperature when the super-hydrophobic surface (SHS) was heated and brought it down when the no slip surface (NSS) was heated, (3) a critical temperature jump coefficient was observed at which the flow rates in both cases (only SHS heated, and only NSS heated) were equal. A few application areas of the research include micro-fluidics and micro-electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.