Previous reports have highlighted a possible link between Huntington's disease (HD) and diabetes mellitus (DM), but the association has not been characterised in detail. A transgenic mouse model for HD, the R6/2 mouse, also develops diabetes. In the present study, we examined the R6/1 mouse, which carries a shorter CAG repeat than the R6/2 mouse, and found that, although not diabetic, the mice showed several signs of impaired glucose tolerance. First, following i.p. glucose injection, the blood glucose concentration was approximately 30% higher in young R6/1 mice (10 weeks) compared to wild-type mice (P = 0.004). In older mice (38 weeks), glucose tolerance was further impaired in both R6/1 and wild-type animals. Second, during glucose challenge, the R6/1 mice reached higher plasma insulin levels than wild-type mice, but the peripheral insulin sensitivity was normal as measured by injection of human or mouse insulin or when evaluated by the quantitative insulin sensitivity check index (QUICKI). Third, the beta cell volume was 17% and 39% smaller at 10 and 38 weeks of age, respectively, compared to age-matched wild-type littermates and the reduction was not caused by apoptosis at either age. Finally, we demonstrated the presence of the HD gene product, huntingtin (htt), in both alpha- and beta-cells in R6/1 islets of Langerhans. Since pancreatic beta cells and neurons share several common traits, clarification of the mechanism associating neurodegenerative diseases with diabetes might improve our understanding of the pathogenic events leading to both groups of diseases.
Orexins/hypocretins, two isoforms of the same prepropeptide, are widely distributed throughout the brain and are involved in several physiological and neuroendocrine regulatory patterns, mostly related to feeding, sleep, arousal, and cyclic sleep-wake behaviors. Orexin-A and orexin-B bind with different affinities to two G-protein-coupled transmembrane receptors, orexin-1 and orexin-2 receptors (OR-R1 and OR-R2, respectively). Because of the similarities between the human and the swine brain, we have studied the pig to investigate the orexinergic system in the diencephalon, with special emphasis on the neuroanatomical projections to the epithalamic region. By using antibodies against orexin-A and orexin-B, immunoreactive large multipolar perikarya were detected in the hypothalamic periventricular and perifornical areas at the light and electron microscopic levels. In the region of the paraventricular nucleus, the orexinergic neurons extended all the way to the lateral hypothalamic area. Immunoreactive nerve fibers, often endowed with large varicosities, were found throughout the hypothalamus and the epithalamus. Some periventricular immunoreactive nerve fibers entered the epithalamic region and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.