OBJECTIVEThis mechanistic trial compared the pharmacodynamics and safety of lixisenatide and liraglutide in combination with optimized insulin glargine with/without metformin in type 2 diabetes (T2D). RESEARCH DESIGN AND METHODSThis was a multicenter, randomized, open-label, three-arm trial comparing lixisenatide 20 mg and liraglutide 1.2 and 1.8 mg once daily for 8 weeks in combination with insulin glargine after optimized titration. The primary end point was change from baseline to week 8 in incremental area under the postprandial plasma glucose curve for 4 h after a standardized solid breakfast (AUC PPG 0030-0430 h ). Changes from baseline in gastric emptying, 24-h plasma glucose profile, HbA 1c , fasting plasma glucose (FPG), 24-h ambulatory heart rate and blood pressure, amylase and lipase levels, and adverse events (AEs) were also assessed. 2) h · mg/dL] vs. liraglutide 1.8 mg; P < 0.001 for both), and gastric emptying was delayed to a greater extent than with liraglutide 1.2 and 1.8 mg (P < 0.001 for treatment comparisons). FPG was unchanged in all treatment arms. At week 8, mean 6 SD HbA 1c was 6.2 6 0.4% (44 6 5 mmol/mol), 6.1 6 0.3% (44 6 4 mmol/mol), and 6.1 6 0.3% (44 6 4 mmol/mol) for lixisenatide 20 mg and liraglutide 1.2 and 1.8 mg, respectively. At week 8, both liraglutide doses increased marginal mean 6 SE 24-h heart rate from baseline by 9 6 1 bpm vs. 3 6 1 bpm with lixisenatide (P < 0.001). Occurrence of symptomatic hypoglycemia was higher with lixisenatide; gastrointestinal AEs were more common with liraglutide. Lipase levels were significantly increased from baseline with liraglutide 1.2 and 1.8 mg (marginal mean 6 SE increase 21 6 7 IU/L for both; P < 0.05). CONCLUSIONSLixisenatide and liraglutide improved glycemic control in optimized insulin glargine-treated T2D albeit with contrasting mechanisms of action and differing safety profiles.
OBJECTIVEIn patients with type 2 diabetes, glucagon levels are often increased. Furthermore, pulsatile secretion of insulin is disturbed in such patients. Whether pulsatile glucagon secretion is altered in type 2 diabetes is not known.RESEARCH DESIGN AND METHODSTwelve patients with type 2 diabetes and 13 nondiabetic individuals were examined in the fasting state and after mixed meal ingestion. Deconvolution analyses were performed on insulin and glucagon concentration time series sampled at 1-min intervals.RESULTSBoth insulin and glucagon were secreted in distinct pulses, occurring at ∼5-min intervals. In patients with diabetes, postprandial insulin pulse mass was reduced by 74% (P < 0.001). Glucagon concentrations were increased in the patients during fasting and after meal ingestion (P < 0.05), specifically through an increased glucagon pulse mass (P < 0.01). In healthy subjects, the increase in postprandial insulin levels was inversely related to respective glucagon levels (P < 0.05). This relationship was absent in the fasting state and in patients with diabetes.CONCLUSIONSGlucagon and insulin are secreted in a coordinated, pulsatile manner. A plausible model is that the postprandial increase in insulin burst mass represses the corresponding glucagon pulses. Disruption of the insulin–glucagon interaction in patients with type 2 diabetes could potentially contribute to hyperglucagonemia.
OBJECTIVEβ-Cell mass declines progressively during the course of diabetes, and various antidiabetic treatment regimens have been suggested to modulate β-cell mass. However, imaging methods allowing the monitoring of changes in β-cell mass in vivo have not yet become available. We address whether pancreatic β-cell area can be assessed by functional test of insulin secretion in humans.RESEARCH DESIGN AND METHODSA total of 33 patients with chronic pancreatitis (n = 17), benign pancreatic adenomas (n = 13), and tumors of the ampulla of Vater (n = 3) at various stages of glucose tolerance were examined with an oral glucose load before undergoing pancreatic surgery. Indexes of insulin secretion were calculated and compared with the fractional β-cell area of the pancreas.RESULTSβ-Cell area was related to fasting glucose concentrations in an inverse linear fashion (r = −0.53, P = 0.0014) and to 120-min postchallenge glycemia in an inverse exponential fashion (r = −0.89). β-Cell area was best predicted by a C-peptide–to–glucose ratio determined 15 min after the glucose drink (r = 0.72, P < 0.0001). However, a fasting C-peptide–to–glucose ratio already yielded a reasonably close correlation (r = 0.63, P < 0.0001). Homeostasis model assessment (HOMA) β-cell function was unrelated to β-cell area.CONCLUSIONSGlucose control is closely related to pancreatic β-cell area in humans. A C-peptide–to–glucose ratio after oral glucose ingestion appears to better predict β-cell area than fasting measures, such as the HOMA index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.