Aim
The current study investigated the impact of maternal obesity on placental phenotype in relation to fetal growth and sex.
Methods
Female C57BL6/J mice were fed either a diet high in fat and sugar or a standard chow diet, for 6 weeks prior to, and during, pregnancy. At day 19 of gestation, placental morphology and mitochondrial respiration and dynamics were assessed using high‐resolution respirometry, stereology, and molecular analyses.
Results
Diet‐induced maternal obesity increased the rate of small for gestational age fetuses in both sexes, and increased blood glucose concentrations in offspring. Placental weight, surface area, and maternal blood spaces were decreased in both sexes, with reductions in placental trophoblast volume, oxygen diffusing capacity, and an increased barrier to transfer in males only. Despite these morphological changes, placental mitochondrial respiration was unaffected by maternal obesity, although the influence of fetal sex on placental respiratory capacity varied between dietary groups. Moreover, in males, but not females, maternal obesity increased mitochondrial complexes (II and ATP synthase) and fission protein DRP1 abundance. It also reduced phosphorylated AMPK and capacity for lipid synthesis, while increasing indices of oxidative stress, specifically in males. In females only, placental mitochondrial biogenesis and capacity for lipid synthesis, were both enhanced. The abundance of uncoupling protein‐2 was decreased by maternal obesity in both fetal sexes.
Conclusion
Maternal obesity exerts sex‐dependent changes in placental phenotype in association with alterations in fetal growth and substrate supply. These findings may inform the design of personalized lifestyle interventions or therapies for obese pregnant women.
γ-Secretase (GS) is a key target for the potential treatment of Alzheimer's disease. While inhibiting GS led to serious side effects, its modulation holds a lot of potential to deliver a safe treatment. Herein, we report the discovery of a potent and selective gamma secretase modulator (GSM) (S)-3 (RO7185876), belonging to a novel chemical class, the triazolo-azepines. This compound demonstrates an excellent in vitro and in vivo DMPK profile. Furthermore, based on its in vivo efficacy in a pharmacodynamic mouse model and the outcome of the dose range finding (DRF) toxicological studies in two species, this compound was selected to undergo entry in human enabling studies (e.g., GLP toxicology and scale up activities).
amino-[1,2,4]triazolo[1,5-a]pyridine structures and analogues such as (X) and (XII). A wide scope is possible where a broad spectrum of substrates is tolerated. Whereas the chloro-substituted substrates (III) react without any problem, no conversion is observed with the bromo compounds. If an iodine substituent is present [cf. (V)], CuI has to be used instead of CuBr. -(BARTELS*, B.; BOLAS, C. G.; CUENI, P.; FANTASIA, S.; GAENG, N.; TRITA, A. S.; J.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.