This paper represents the second part of an integrated study that is focussed on the development and distribution of reservoir bodies and properties in epeiric carbonate systems. It is based on outcrop analogue data from Triassic ‘layer-cake’ carbonates in the South German Basin, which were deposited along an epicontinental, very gently inclined carbonate ramp. The reservoir facies consists of skeletal and oolitic carbonate grainstones (Φmax 23%, Kmax 700 mD), which are organized in a pronounced hierarchy of stratigraphic cycles. Based on outcrops, cores, gamma ray (GR) logs and thin sections, a high-resolution, geocellular 3D facies model was generated, which covers the area of a Middle East giant gas field (25×36 km). The spatial distribution of reservoir properties was systematically investigated on different scales. The lateral distribution of reservoir properties remains in the same order of magnitude for hundreds of metres, within in the same stratigraphic position. However, on a kilometre scale, facies bodies, diagenetic trends and thus reservoir properties show gradual lateral changes. Vertically, in contrast, properties change commonly on a decimetre scale and are largely controlled by stratigraphic cycles. Petrophysical modelling enhanced the understanding of key factors and processes controlling both reservoir quality and quantity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.