Abstract. Anthropogenic emissions are dominant contributors to air pollution. Consequently, mitigation policies have been attempted since the 1990s in Europe to reduce pollution by anthropogenic emissions. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon (BC) and sub-micrometre aerosol particles. In this study, long-term trends of atmospheric particle number concentrations (PNCs) and equivalent BC (eBC) mass concentration over a 10-year period (2009–2018) were determined for 16 GUAN sites ranging from roadside to high Alpine environments. Overall, statistically significant decreasing trends are found for most of these parameters and environments in Germany. The annual relative slope of eBC mass concentration varies between −13.1 % and −1.7 % per year. The slopes of the PNCs vary from −17.2 % to −1.7 %, −7.8 % to −1.1 %, and −11.1 % to −1.2 % per year for 10–30, 30–200, and 200–800 nm size ranges, respectively. The reductions in various anthropogenic emissions are found to be the dominant factors responsible for the decreasing trends of eBC mass concentration and PNCs. The diurnal and seasonal variations in the trends clearly show the effects of the mitigation policies for road transport and residential emissions. The influences of other factors such as air masses, precipitation, and temperature were also examined and found to be less important or negligible. This study proves that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales. It also suggests that a long-term aerosol measurement network at multi-type sites is an efficient and necessary tool for evaluating emission mitigation policies.
h i g h l i g h t sLarge Ca 2þ abundance and coarse particle volume (0.5e7 mm) indicate Saharan dust.The annual number of Saharan dust days shows no significant trend. The relative contribution of dust to total particle mass decreases from 6% to 4%. Sahara dust events, detected by different metrics at different stations, are consistent. 4 of 5 EU law threshold exceedances (daily PM10 > 50 mg/m 3 ) are due to Saharan dust. a b s t r a c t An inventory of Sahara dust (SD) events at the Hohenpeibenberg Global Atmosphere Watch station (Germany) is presented for the period 1997e2013. Based on daily in-situ measurements, high Ca 2þ -ion concentrations and large particle volume concentrations at diameters d p z 0.5e7 mm are inferred as indicators for days influenced by SD. The resulting SD catalogue agrees with SD time series from Schneefernerhaus, Augsburg and Jungfraujoch stations. On average, SD occurs in 5e15 SD events (SDE) per year covering about 10e60 days/yr in the mixing layer. SDE exhibit a clear seasonality with spring and early autumn maxima, and typically last for 1e3 days. SDE are equally frequent but more significant at Alpine levels due to lower background. Wet deposition of Ca 2þ at the surface is little correlated (R 2 ¼ 0.14) with particle Ca 2þ on a daily basis and yields an average annual Ca 2þ immission of 0.22 ± 0.04 g/m 2 yr, about 40% of which is due to SD. The majority of outstanding weekly Fe and Al depositions are associated with SDE. SD contributes about 0.5 ± 0.1 mg/m 3 to the total particle mass with a decreasing trend from 6% to 4% (À0.1%/yr) in the 1997e2013 period. Except from one, all threshold exceedances according to European legislation (daily PM 10 > 50 mg/m 3 ) at Hohenpeibenberg are due to SD. Implications are discussed with respect to SD-related circulation patterns, SD-induced temperature anomalies in weather forecast models and the capability of aerosol models to capture SDE.
Abstract. Anthropogenic emissions are a dominant contributor to air pollution. Consequently, mitigation policies have attempted to reduce anthropogenic pollution emissions in Europe since the 1990s. To evaluate the effectiveness of these mitigation policies, the German Ultrafine Aerosol Network (GUAN) was established in 2008, focusing on black carbon and sub-micrometer aerosol particles, especially ultrafine particles. In this investigation, trends of the size-resolved particle number concentrations (PNC) and the equivalent black carbon (eBC) mass concentration over a 10-year period (2009–2018) were evaluated for 16 observational sites for different environments among GUAN. The trend analysis was done for both, the full-length time series and on subsets of the time series in order to test the reliability of the results. The results show generally decreasing trends of both, the PNCs for all size ranges as well as eBC mass concentrations in all environments, except PNC in 10–30 nm at regional background and mountain sites. The annual slope of the eBC mass concentration varies between −7.7 % and −1.8 % per year. The slopes of the PNCs varies from −6.3 % to 2.7 %, −7.0 % to −2.0 %, and −9.5 % to −1.5 % per year (only significant trends) for 10–30 nm, 30–200 nm, and 200–800 nm particle diameter, respectively. The regional Mann-Kendall test yielded regional-scale trends of eBC mass concentration, N[30–200] and N[200–800] of −3.8 %, −2.0 % and −2.4 %, respectively, indicating an overall decreasing trend for eBC mass concentration and sub-micrometer PNC (except N[10–30]) all over Germany. The most significant decrease was observed on working days and during daytime in urban areas, which implies a strong evidence of reduced anthropogenic emissions. For the seasonal trends, stronger reductions were observed in winter. Possible reasons for this reduction can be the increased average ambient temperatures and wind speed in winter, which resulted in less domestic heating and stronger dilution. In addition, decreased precipitation in summer also diminishes the decrease of the PNCs and eBC mass concentration. For the period of interest, there were no significant changes in long-range transport patterns. The most likely factors for the observed decreasing trends are declining anthropogenic emissions due to emission mitigation policies of the European Union.
Abstract. Aerosolized black carbon is monitored worldwide to quantify its impact on air quality and climate. Given its importance, measurements of black carbon mass concentrations must be conducted with instruments operating in quality-checked and ensured conditions to generate data which are reliable and comparable temporally and geographically. In this study, we report the results from the largest characterization and intercomparison of filter-based absorption photometers, the Aethalometer model AE33, belonging to several European monitoring networks. Under controlled laboratory conditions, a total of 23 instruments measured mass concentrations of black carbon from three well-characterized aerosol sources: synthetic soot, nigrosin particles, and ambient air from the urban background of Leipzig, Germany. The objective was to investigate the individual performance of the instruments and their comparability; we analyzed the response of the instruments to the different aerosol sources and the impact caused by the use of obsolete filter materials and the application of maintenance activities. Differences in the instrument-to-instrument variabilities from equivalent black carbon (eBC) concentrations reported at 880 nm were determined before maintenance activities (for soot measurements, average deviation from total least square regression was −2.0 % and the range −16 % to 7 %; for nigrosin measurements, average deviation was 0.4 % and the range −15 % to 17 %), and after they were carried out (for soot measurements, average deviation was −1.0 % and the range −14 % to 8 %; for nigrosin measurements, the average deviation was 0.5 % and the range −12 % to 15 %). The deviations are in most of the cases explained by the type of filter material employed by the instruments, the total particle load on the filter, and the flow calibration. The results of this intercomparison activity show that relatively small unit-to-unit variability of AE33-based particle light absorbing measurements is possible with well-maintained instruments. It is crucial to follow the guidelines for maintenance activities and the use of the proper filter tape in the AE33 to ensure high quality and comparable black carbon (BC) measurements among international observational networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.