The cytotoxic concentrations of about 100 randomly selected drugs and chemicals, tested on HeLa cells in the MIT-24 system and/or in primary cultures of fetal chicken cells, were compared with the lethal doses and/or concentrations of the agents in the mouse and in man. Most agents (80%) had a similar toxicity in vitro and in vivo, suggesting a lethal interference in man with basal functions common to all specialized human tissues as well as cultured cells, i.e., basal cytotoxicity. This high frequency of basally cytotoxic agents opens possibilities for screening chemicals for toxicity and for studying cytotoxic mechanisms with a standard battery of a few appropriate cell tests. This battery may be used in three ways: (1) to study cytotoxic mechanisms of all chemicals, and apply the resulting knowledge to understanding toxicity in man of basally cytotoxic agents; (2) to supplement conventional animal tests in acute toxicity test programs; (3) to screen chemicals and extracts for their potential basal cytotoxicity. To validate these ideas and to select suitable tests for the battery, results from cytotoxicity tests on a wide variety of chemicals in several in vitro systems must be compared with one another and with the toxicity of the agents in animals and man.
A new international project to evaluate the relevance for human systemic and local toxicity of in vitro tests of general toxicity of chemicals has been organized by the Scandinavian Society of Cell Toxicology under the title Multicenter Evaluation of In Vitro Cytotoxicity (MEIC). The basic assumptions underlying the project, as well as the practical goals and the design of the program are outlined. The list of the first 50 reference chemicals is presented. The chemicals are an otherwise unbiased selection of compounds with known human acutely lethal dosage and blood concentrations, including LD50-values in the rat or mouse. Most agents also have other data on human toxicity and toxicokinetics, including more extensive animal toxicity data. International laboratories already using or developing in vitro tests of various partial aspects of general toxicity are invited to test the substances, the results of which will be evaluated by us. The predictivity of the in vitro results for both partial and gross human toxicity data will be determined with combined use of univariate regression analysis and soft multivariate modeling. The predictivity of the in vitro results will be compared with the predictivity of conventional animal tests for the same chemicals. Finally, batteries of tests with optimal prediction power for various types of human toxicity will be selected. The need for and possible uses of such batteries are discussed.
Results from tests on the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) reference chemicals 31–50 in 67 different in vitro toxicity assays are presented in this paper as a prerequisite to in vitro/in vivo comparisons for all MEIC in vitro toxicity data in forthcoming papers, i.e. the final MEIC evaluation of the relevance of the tests. With the aim of increasing knowledge about the relative significance of some in vitro methodological factors, the strategies and methods of the preceding parts in the MEIC series (Parts II and III) were again employed to enable comparative cytotoxicity analysis of the new in vitro results presented in this paper. A principal components analysis (PCA) of the results from tests of the 20 chemicals in 67 assays demonstrated a dominating first component describing as much as 74% of the variance in the toxicity data, indicating a similar ranking of the cytotoxicities of the chemicals in most of the tests. The influence on the general variability of the results of a few, key methodological factors was also evaluated by using linear regression comparisons of the results of all pairs of methods available in the study, i.e. methods which were similar in all respects except for the factor being analysed. Results from this “random probe” analysis were: a) the cytotoxicities of 11 of the 20 chemicals increased considerably with exposure time (> 10 times over 4–168 hours); b) in general, human cell line toxicity was well predicted by cytotoxicity in animal cells; c) prediction of human cell line toxicity by most ecotoxicological tests was only fairly good; d) 14 comparisons of similar assays with different cell lines showed similar toxicities (mean R2 = 0.83); e) nine comparisons of similar assays employing different primary cultures and cell lines shared similar toxicities (mean R2 = 0.71); and f) 16 comparisons of similar assays with different growth/viability endpoints showed similar toxicities (mean R2 = 0.71). Results b, d, e and f must contribute to the PCA-documented high general similarity of the in vitro toxicity data. Results a and c, together with factors which were not analysed, such as different protocols and inter-laboratory variability of tests, could explain the 26% dissimilarity. To provide background information to the planned final MEIC evaluation of the relevance of the 61 methods in which all 50 chemicals have been tested, an additional PCA was made of the 50 chemical-61 assay in vitro database (from Parts II and III and the present paper). This supplementary PCA demonstrated an 80% similarity of results. Compared with the previous analysis of the tests of the first 30 MEIC reference chemicals (MEIC Part III), the present analysis of the tests of the last 20 MEIC chemicals indicates a somewhat higher variation in the results. Correspondingly, some deviating endpoint measurements and cell line responses were demonstrated by the pairwise comparisons in the present study. As a result, the analysis revealed a high correlation (R2 = 0.73) between the average human cell line toxicity and the results from a new protein denaturation test. These preliminary results suggest that intracellular protein denaturation may be a frequently occurring mechanism in basal cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.