This paper presents an 802.11ad-based radio frequency module for high data rate fixed wireless access and backhaul communications. The transceiver chip is manufactured in SiGe BiCMOS technology covering 57–71 GHz, providing 16 RX and 16 TX paths with combined output power of more than 20 dBm. The chip is packaged using embedded wafer-level BGA technology of the size $$12.6\times 12.6\times 0.8~{\text{ mm }}^3$$ 12.6 × 12.6 × 0.8 mm 3 and employs advanced dielectric materials with 2 metallic redistribution layers. The package integrates the transceiver chip with RX and TX high gain PCB antenna arrays, allowing effective isotropic radiated power (EIRP) of more than 40 dBm. Beam steering is achieved in ± 50$$^{\circ }$$ ∘ by the transceiver through providing appropriate weights to the antenna arrays. The paper presents generation of beamforming lookup table along with optimization of the power distribution to the array. This optimization results in flattening of the EIRP over the whole beam-steering range and frequency bandwidth. The module allows for data rates up to 10 Gbps by employing full-channel 128 QAM and half-channel 256 QAM single-carrier modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.