Abstract.Recycling of poly(ethylene terephthalate) (PET) is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers). Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.
The intelligent recycling of plastics waste is a major concern. Because of the widespread use of polyethylene terephtalate, considerable amounts of PET waste are generated that are ideally re‐introduced into the material cycle by generating second generation products without loss of materials performance. Chemical recycling methods are often expensive and entail environmentally hazardous by‐products. Established mechanical methods generally provide materials of reduced quality, leading to products of lower quality. These drawbacks can be avoided by the development of new recycling methods that provide materials of high quality in every step of the production cycle. In the present work, oligomeric ethylene terephthalate with defined degrees of polymerization and defined molecular weight is produced by melt‐mixing PET with different quantities of adipic acid as an alternative pathway of recycling PET with respect to conventional methods, offering ecofriendly and economical aspects. Additionally, block‐copolyesters of defined block length are designed from the oligomeric products. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39786.
Ethylene terephthalate and ethylene naphthalate oligomers of defined degree of polymerization were synthesized via chemical recycling of the parent polymers. The oligomers were used as defined building blocks for the preparation of novel block-co-polyesters having tailored sequence compositions. The sequence lengths were systematically varied using Design of Experiments. The dispersive surface energy and the specific desorption energy of the co-polymers were determined by inverse gas chromatography. The study shows that polyethylene terephthalate-polyethylene naphthalate (PET-PEN) block-co-polyesters of defined sequence lengths can be prepared. Furthermore, the specific and dispersive surface energies of the obtained block-co-polyesters showed a linear dependence on the oligomer molecular weight and it was possible to regulate and control their interfacial properties. In contrast, with the corresponding random-block-co-polyesters no such dependence was found. The synthesized block-co-polyesters could be used as polymeric modifying agents for stabilizing PET-PEN polymer blends.
Block-copolyesters of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) were synthesized via reactive extrusion. The influence of processing parameters on the material properties on a molecular scale like degree of trans-esterification, block length, and degree of randomness were investigated. The varied process factors were extrusion temperature and rotational speed. The effects of process parameter variation were investigated by 1 H-NMR-spectroscopy. The experimental results show a clear dependence of the molecular properties on the processing conditions. By using statistical experimental design (DoE), it was possible to prepare defined copolyesters from PET and PEN without addition of further chemicals. With a degree of randomness between 0.05 and 0.5, the presence of an actual copolyester was confirmed when appropriate extrusion conditions were applied. The reactive extrusion process was confirmed to be suitable to produce defined block-copolyesters in a predictable and reproducible way. It was possible to produce designed sequence lengths, which could be adjusted within a range of 11-136 repeating units in the case of PET and, in the case of PEN, of 2.5-26. The produced materials can be used as barrier materials or barrier coatings to protect substrates against molecular oxygen and water vapour, e.g., in organic photovoltaic applications or food packaging. The described method is a one-pot alternative method to the previously described chemical recycling pathway.
The quality of decorative laminates boards depends on the impregnation process of Kraft papers with a phenolic resin, which constitute the raw materials for the manufacture of the cores of such boards. In the laminates industries, the properties of resins are adapted via their syntheses, usually by mixing phenol and formaldehyde in a batch, where additives, temperature and stirring parameters can be controlled. Therefore, many possibilities of preparation of phenolic resins exist, that leads to different combinations of physico-chemical properties. In this article, the properties data of eight phenolic resins synthetized with different parameters of pH and reaction times at 60 °C and 90 °C are presented: the losses of pH after synthesis and the dynamic viscosities measured after synthesis and once the solid content is adjusted to 45%w/w in methanol. Data acquired by Differential Scanning Calorimetry (DSC) of the resins and Inverse Gas Chromatography (IGC) of cured solids are given as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.