The maintenance of synaptic transmission requires that vesicles be recycled after releasing neurotransmitter. Several modes of retrieval have been proposed to operate at small synaptic terminals of central neurons, including a fast "kiss-and-run" mechanism that releases neurotransmitter through a fusion pore. Using an improved fluorescent reporter comprising pHluorin fused to synaptophysin, we find that only a slow mode of endocytosis (tau = 15 s) operates at hippocampal synapses when vesicle fusion is triggered by a single nerve impulse or short burst. This retrieval mechanism is blocked by overexpression of the C-terminal fragment of AP180 or by knockdown of clathrin using RNAi, and it is associated with the movement of clathrin and vesicle proteins out of the synapse. These results indicate that clathrin-mediated endocytosis is the major, if not exclusive, mechanism of vesicle retrieval after physiological stimuli.
Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of -amyloid (A) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble A oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric A. Additional studies conducted in a human donor-acceptor cell model show that this A transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular A oligomers play a role in neurodegeneration, and they explain the manner in which A can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.
To investigate paired pulse facilitation of corticogeniculate EPSCs, whole-cell patch-clamp recordings were made from principal cells in the rat dorsal lateral geniculate nucleus (dLGN) in vitro. Thalamic slices, oriented so that both corticogeniculate and retinogeniculate axons could be stimulated, were cut from young (16-to 37-day-old) DA-HAN rats. Corticogeniculate EPSCs displayed pronounced paired pulse facilitation at stimulus intervals up to 400 ms. The facilitation had a fast and a slow component of decay with time constants of 12 ± 7 and 164 ± 47 ms (means ± S.D.), respectively. Maximum paired pulse ratio (EPSC 2 w EPSC 1 _1 ) was 3.7 ± 1.1 at the 20-30 ms interval. Similar to other systems, the facilitation was presynaptic. Retinogeniculate EPSCs recorded in the same dLGN cells displayed paired pulse depression at intervals up to at least 700 ms. The two types of EPSCs differed in their calcium response curves. At normal [Ca 2+ ] o , the corticogeniculate synapse functioned over the early rising part of a Hill function, while the retinogeniculate synapse operated over the middle and upper parts of the curve. The paired pulse ratio of corticogeniculate EPSCs was maximal at physiological [Ca 2+ ] o . The facilitation is proposed to have an important role in the function of the corticogeniculate circuit as a neuronal amplifier.
To investigate unitary corticogeniculate excitatory postsynaptic currents (EPSCs), whole cell patch-clamp recordings were obtained from 20 principal cells in slices of the dorsal lateral geniculate nucleus (dLGN) of DA-HAN rats. EPSCs, evoked by electrical stimulation of corticogeniculate axons, had size distributions with one or more quantal peaks. Gaussian curves fitted to such distributions gave a mean quantal size (q) of -5.0 +/- 0.7 (SD) pA for the EPSCs. Paired-pulse ratio (EPSC2/EPSC1) was 3.3 +/- 0.9 for stimuli separated by 40 ms. The mean quantal size was similar for facilitated EPSCs (-5.2 +/- 0.8 pA), implying an increase in mean quantal content (m). Most corticogeniculate axons were capable of releasing only one or two quanta onto individual principal cells. Mean resting release probability (p) was low, 0.09 +/- 0.04. Binomial models, with the same n but increased p, could account for both the basal and facilitated EPSC size distributions in 6/8 cells. It is suggested that the low resting efficacy of corticogeniculate synapses serves to stabilize this excitatory feedback system. The pronounced facilitation in conjunction with large convergence from many corticogeniculate cells would provide a transient, potent excitation of dLGN cells, compliant with the idea of a visually driven neuronal amplifier.
The readily releasable pool of vesicles (RRP) varies in size during synaptic activity and is replenished by recruitment from the reserve pool as well as vesicle retrieval after fusion. To investigate which of these steps is rate limiting in supplying vesicles to the RRP, we measured the effects of changes in temperature in cultured hippocampal neurons, where higher average rates of release can be maintained as the temperature is increased. Using a pHluorin-based reporter of exocytosis and endocytosis (sypHy), we find that changes in temperature between 25• C and 35• C do not significantly alter the rate of recruitment from the reserve pool. In contrast, the time constant of endocytosis fell from ∼17 s at 25• C to ∼10 s at 35• C (Q 10 = 1.7), while the time constant of vesicle reacidification fell from ∼5.5 s to ∼1 s (Q 10 = 5.5). A kinetic model of the vesicle cycle constructed using measured parameters was found to describe variations in vesicle release rate observed during long trains of spikes as well as recovery from synaptic depression after bursts of activity. These results indicate that endocytosis operating with time constants of 10-15 s is the rate-limiting process determining replenishment of the RRP during long-term activity. A fast mode of vesicle retrieval could not be detected at any temperature, nor was it necessary to invoke such a mechanism to account for use-dependent changes in synaptic release probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.