The measurement of quantum signals that traveled through long distances is of fundamental and technological interest. We present quantum-limited coherent measurements of optical signals, sent from a satellite in geostationary Earth orbit to an optical ground station. We bound the excess noise that the quantum states could have acquired after having propagated 38 600 km through Earth's gravitational potential as well as its turbulent atmosphere. Our results indicate that quantum communication is feasible in principle in such a scenario, highlighting the possibility of a global quantum key distribution network for secure communication.Quantum mechanics has successfully undergone a number of fundamental experimental tests since its development [1][2][3]. Still some aspects pose both a theoretical and an experimental challenge, such as the relation of quantum mechanics and gravity [4][5][6]. Quantum-limited measurements of quantum states traveling through long distances in outer space provide both an offer to test quantum mechanics under such extreme conditions and a prerequisite for its use in quantum technology [7]. To this end satellite quantum communication [8][9][10][11][12][13][14][15] promises to provide the currently missing links for global quantum key distribution (QKD). Important experiments in satellite quantum communication have been reported or are currently being devised and set up [16][17][18][19][20][21][22].This work presents and discusses quantum-limited measurements on optical signals sent from a GEOstationary satellite. We report on the first bound of the possible influence of physical effects on the quantum states traveling through Earth's gravitational potential and evaluating its impact on quantum communication.Optical [27]). In parallel, free space quantum communication has made its steps out of laboratories into real-world scenarios [28][29][30][31]. It has turned out that detecting field quadratures (continuous variables) is well suited to combat disturbances from atmospheric turbulence and stray light [32][33][34]. Using these methods, the first implementation of an intra-urban free space quantum link using quantum coherent detection has been reported [35,36]. The advantage of stray light immunity applies as well to classical coherent satellite communication [37]. The similarity between these classical and quantum technologies allows us to make use of the platform of a technologically mature Laser Communication Terminal (LCT) [38][39][40] for future quantum communication (see Fig 1).An important step on this way is to precisely characterize system and channel with respect to their quantum noise behavior. Coherent quantum communication employs encoding of quantum states in phase space and works at the limit of the Heisenberg uncertainty relation [41], but is susceptible to additional technical noise. Our task here is to characterize whether quantum coherence properties are preserved after propagation of quantum states over 38 600 km, through a large part of graviarXiv:1608.03511v2 [quant-...
We realize an absolute position control of drifting dissipative optical solitons by injecting an incoherent amplitude parameter gradient onto the nonlinear optical system. This allows for two-dimensional, arbitrary control patterns. The control of the soliton drift velocity is studied applying a periodic, hexagonally shaped modulation. The guiding of dissipative solitons by one- and two-dimensional parameter modulations is demonstrated. Furthermore, one-dimensional, line-shaped parameter modulations are designed to act as barriers for dissipative solitons, allowing implementations of position selectors for solitons. The interaction of dissipative optical solitons with barriers is studied for different barrier parameters.
We report on the addressing and control of the lateral positions of optical spatial solitary structures in a single feedback experiment with a saturable Kerr nonlinearity. Solitary structures allow a locally self-confined switching between a dark background and a bright state. This binary character can be of use to all-optically route information in optical networks. In general the lateral positions of solitary structures are strongly influenced by mutual interactions and system inhomogeneities. For potential photonic applications these interactions must be controllable. Therefore a noninvasive interferometric control method based on spatial Fourier filtering is studied in order to position solitary structures. Numerical and experimental results show that solitary structures can be aligned to periodic grids of different scale with hexagonal or square geometries.
By harnessing quantum effects, we nowadays can use encryption that is in principle proven to withstand any conceivable attack. These fascinating quantum features have been implemented in metropolitan quantum networks around the world. In order to interconnect such networks over long distances, optical satellite communication is the method of choice. quadratures (continuous variables). This opens the possibility to adapt our Laser Communication Terminals (LCTs) to quantum key distribution (QKD). First satellite measurement campaigns are currently validating our approach. Standard telecommunication components allow one to efficiently implement quantum communication by measuring field
We report on the experimental implementation of an external control for optical feedback solitons using incoherent spatial intensity distributions in a liquid crystal light valve (LCLV) optical single feedback system. The external control provides excellent experimental possibilities for static and dynamic control of the lateral positions of the optical feedback solitons which will be demonstrated. Particularly, the influence of different gradients onto the drift motion of spatial solitons is experimentally investigated in detail. In agreement with theoretical predictions, the drift velocity of the soliton increases according to the steepness of the gradient. Additionally, a completely incoherent addressing scheme including creation and erasure of feedback solitons is demonstrated for the LCLV setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.