Objective: X-linked dystonia parkinsonism (XDP) is a neurodegenerative movement disorder caused by a single mutation: SINE-VNTR-Alu (SVA) retrotransposon insertion in TAF1. Recently, a (CCCTCT) n repeat within the SVA insertion has been reported as an age-at-onset (AAO) modifier in XDP. Here we investigate the role of this hexanucleotide repeat in modifying expressivity of XDP. Methods: We genotyped the hexanucleotide repeat in 355 XDP patients and correlated the repeat number (RN) with AAO (n = 295), initial clinical manifestation (n = 294), site of dystonia onset (n = 238), disease severity (n = 28), and cognitive function (n = 15). Furthermore, we investigated i) repeat instability by segregation analysis and Southern blotting using postmortem brain samples from two affected individuals and ii) relative TAF1 expression in blood RNA from 31 XDP patients. Results: RN showed significant inverse correlations with AAO and with TAF1 expression and a positive correlation with disease severity and cognitive dysfunction. Importantly, AAO (and not RN) was directly associated with whether dystonia or parkinsonism will manifest at onset. RN was lower in patients affected by mouth/tongue dystonia compared with blepharospasm. RN was unstable across germline transmissions with an overall tendency to increase in length and exhibited somatic mosaicism in brain. Interpretation: The hexanucleotide repeat within the SVA insertion acts as a genetic modifier of disease expressivity in XDP. RN-dependent TAF1 repression and subsequent differences in TAF1 mRNA levels in patients may be potentiated in the brain through somatic variability leading to the neurological phenotype.
A BS TRACT: This systematic MDSGene review covers individuals with confirmed genetic forms of primary familial brain calcification (PFBC) available in the literature. Data on 516 (47% men) individuals, carrying heterozygous variants in SLC20A2 (solute carrier family 20 member 2, 61%), PDGFB (platelet-derived growth factor subunit B, 12%), XPR1 (xenotropic and polytropic retrovirus receptor, 16%), or PDGFRB (platelet-derived growth factor receptor beta, 5%) or biallelic variants in MYORG (myogenesis-regulating glycosidase, 13%) or JAM2 (junctional adhesion molecule 2, 2%), were extracted from 93 articles. Nearly one-third of the mutation carriers were clinically unaffected. Carriers of PDGFRB variants were more likely to be clinically unaffected (54%), and the penetrance of SLC20A2 and XPR1 variants (<70%) was lower in comparison to the remaining three genes (>85%). Among the 349 clinically affected patients, 27% showed only motor and 31% only nonmotor symptoms/signs, whereas the remaining 42% had a combination thereof. While parkinsonism and speech disturbance were the most frequently reported motor manifestations, cognitive deficits, headache, and depression were the major nonmotor symptoms/signs. The basal ganglia were always calcified, and the cerebellum, thalamus, and white matter contained calcifications in 58%, 53%, and 43%, respectively, of individuals. In autosomaldominant PFBC, mutation severity influenced the number of calcified brain areas, which in turn correlated with the clinical status, whereby the risk of developing symptoms/signs more than doubled for each additional region with calcifications. Our systematic analysis provides the most comprehensive insight into genetic, clinical, and neuroimaging features of known PFBC forms, to date. In addition, it puts forth the penetrance estimates and newly discovered genotypephenotype relations that will improve counseling of individuals with mutations in PFBC genes.
X-linked dystonia-parkinsonism is a neurodegenerative disorder caused by a founder retrotransposon insertion, in which a polymorphic hexanucleotide repeat accounts for ~50% of age at onset variability. Employing a genome-wide association study to identify additional factors modifying age at onset, we establish that three independent loci are significantly associated with age at onset (p < 5 × 10−8). The lead single nucleotide polymorphisms collectively account for 25.6% of the remaining variance not explained by the hexanucleotide repeat and 13.0% of the overall variance in age at onset in X-linked dystonia-parkinsonism with the protective alleles delaying disease onset by seven years. These regions harbor or lie adjacent to MSH3 and PMS2, the genes that were recently implicated in modifying age at onset in Huntington’s disease, likely through a common pathway influencing repeat instability. Our work indicates the existence of three modifiers of age at onset in X-linked dystonia-parkinsonism that likely affect the DNA mismatch repair pathway.
While observational studies show an association between 25(OH)vitamin D concentrations and depressive symptoms, intervention studies, which examine the preventive effects of vitamin D supplementation on the development of depression, are lacking. To estimate the role of lowered 25(OH)vitamin D concentrations in the etiology of depressive disorders, we conducted a two-sample Mendelian randomization (MR) study on depression, i.e., “depressive symptoms” (DS, n = 161,460) and “broad depression” (BD, n = 113,769 cases and 208,811 controls). Six single nucleotide polymorphisms (SNPs), which were genome-wide significantly associated with 25(OH)vitamin D concentrations in 79,366 subjects from the SUNLIGHT genome-wide association study (GWAS), were used as an instrumental variable. None of the six SNPs was associated with DS or BD (all p > 0.05). MR analysis revealed no causal effects of 25(OH)vitamin D concentration, either on DS (inverse variance weighted (IVW); b = 0.025, SE = 0.038, p = 0.52) or on BD (IVW; b = 0.020, SE = 0.012, p = 0.10). Sensitivity analyses confirmed that 25(OH)vitamin D concentrations were not significantly associated with DS or BD. The findings from this MR study indicate no causal relationship between vitamin D concentrations and depressive symptoms, or broad depression. Conflicting findings from observational studies might have resulted from residual confounding or reverse causation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.