Atrial fibrosis is important for the pathogenesis of atrial fibrillation (AF) but the underlying signal transduction is incompletely understood. We therefore studied the role of microRNA-21 (miR-21) and its downstream target Sprouty 1 (Spry1) during atrial fibrillation. Left atria (LA) from patients with AF showed a 2.5-fold increased expression of miR-21 compared to matched LA of patients in sinus rhythm. Increased miR-21 expression correlated positively with atrial collagen content and was associated with a reduced protein expression of Spry1 and increased expression of connective tissue growth factor (CTGF), lysyl oxidase and Rac1-GTPase. Neonatal cardiac fibroblasts treated with angiotensin II (AngII) or CTGF showed an increased miR-21 and decreased Spry1 expression. Pretreatment with an inhibitor of Rac1 GTPase, NSC23766, reduced the AngII-induced upregulation of miR-21. A small molecule inhibitor of lysyl oxidase, BAPN, prevented the AngII as well as the CTGF-induced miR-21 expression. Transgenic mice with cardiac overexpression of Rac1, which develop spontaneous AF and atrial fibrosis with increasing age, showed upregulation of miR-21 expression associated with reduced Spry1 expression. miR-21 expression and signalling in vivo were prevented by long-term treatment of the mice with statins. Direct inhibition of miR-21 by antagomir-21 prevented fibrosis of the atrial myocardium post-myocardial infarction. Left atria of patients with atrial fibrillation are characterized by upregulation of miR-21 und reduced expression of Spry1. Activation of Rac1 by angiotensin II leads to a CTGF- and lysyl oxidase-mediated increase of miR-21 expression contributing to structural remodelling of the atrial myocardium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.