Mesangial cell injury has a major role in many CKDs. Because renin-positive precursor cells give rise to mesangial cells during nephrogenesis, this study tested the hypothesis that the same phenomenon contributes to glomerular regeneration after murine experimental mesangial injury. Mesangiolysis was induced by administration of an anti-mesangial cell serum in combination with LPS. In enhanced green fluorescent protein-reporter mice with constitutively labeled renin lineage cells, the size of the enhanced green fluorescent protein-positive area in the glomerular tufts increased after mesangial injury. Furthermore, we generated a novel Tet-on inducible triple-transgenic LacZ reporter line that allowed selective labeling of renin cells along renal afferent arterioles of adult mice. Although no intraglomerular LacZ expression was detected in healthy mice, about two-thirds of the glomerular tufts became LacZ positive during the regenerative phase after severe mesangial injury. Intraglomerular renin descendant LacZ-expressing cells colocalized with mesangial cell markers a8-integrin and PDGF receptor-b but not with endothelial, podocyte, or parietal epithelial cell markers. In contrast with LacZ-positive cells in the afferent arterioles, LacZ-positive cells in the glomerular tuft did not express renin. These data demonstrate that extraglomerular renin lineage cells represent a major source of repopulating cells for reconstitution of the intraglomerular mesangium after injury.
During metanephric kidney development, renin is expressed in the walls of larger intrarenal arteries, but is restricted to the terminal part of the preglomerular arterioles in the adult kidney. Our study describes the three-dimensional development of renin expression in mouse kidneys during fetal and postnatal life. Renin immunoreactivity first appeared at day 14 of development in the cells expressing alpha-smooth muscle actin (alphaSMA) in the arcuate arteries. Before adulthood, the branching of the arcuate arterial tree increased exponentially and renin expression shifted from proximal to distal parts of the tree. Renin expression at branching points or in the cones of growing vessels was not seen. Instead, renin expression appeared after vessel walls and branches were already established, disappeared a few days later, and remained only in the juxtaglomerular regions of afferent arterioles. In these arterioles, coexpression of renin and alphaSMA disappeared gradually, with the terminal cells expressing only renin. At all stages of kidney development, renin expression among comparable vessel segments was heterogeneous. Renin expression remained stable after it reached the terminal parts of afferent arterioles.
During metanephric kidney development, renin expression in the renal vasculature begins in larger vessels, shifting to smaller vessels and finally remaining restricted to the terminal portions of afferent arterioles at the entrance into the glomerular capillary network. The mechanisms determining the successive expression of renin along the vascular axis of the kidney are not well understood. Since the cAMP signaling cascade plays a central role in the regulation of both renin secretion and synthesis in the adult kidney, it seemed feasible that this pathway might also be critical for renin expression during kidney development. In the present study we determined the spatiotemporal development of renin expression and the development of the preglomerular arterial tree in mouse kidneys with renin cell-specific deletion of G(s)alpha, a core element for receptor activation of adenylyl cyclases. We found that in the absence of the G(s)alpha protein, renin expression was largely absent in the kidneys at any developmental stage, accompanied by alterations in the development of the preglomerular arterial tree. These data indicate that the maintenance of renin expression following a specific spatiotemporal pattern along the preglomerular vasculature critically depends on the availability of G(s)alpha. We infer from our data that the cAMP signaling pathway is not only critical for the regulation of renin synthesis and secretion in the mature kidney but that it also is critical for establishing the juxtaglomerular expression site of renin during development.
Chronic challenge of renin–angiotensin causes recruitment of renin-producing cells in the kidney along the media layer of afferent arterioles and hypertrophy of cells in the juxtaglomerular apparatus. This study aimed to define the role of nitric oxide (NO) with regard to the recruitment pattern of renin-producing cells and to the possible pathways along which NO could act. We considered the hypothesis that endothelium-derived NO acts via NO-sensitive guanylate cyclase. Mice were treated with low-salt diet in combination with the angiotensin I–converting enzyme inhibitor enalapril for 3 weeks, which led to a 13-fold increase in renin expression associated with marked recruitment of renin cells in afferent arterioles and hypertrophy of the juxtaglomerular apparatus in wild-type mice. In wild-type mice additionally treated with the nonselective NO synthase inhibitor L-NAME, the recruitment of renin-expressing cells along the afferent arterioles was absent and juxtaglomerular hypertrophy was diminished. An almost identical attenuation of renin cell recruitment as with L-NAME treatment in wild-type mice was found in mice lacking the endothelial isoform of NO synthase. Treatment of mice lacking NO-sensitive guanylate cyclase in renin-expressing cells and preglomerular smooth muscle cells with low-salt diet in combination with the angiotensin I–converting enzyme inhibitor enalapril for 3 weeks produced juxtaglomerular hypertrophy like in wild-type mice, but no recruitment in afferent arterioles. These findings suggest that endothelium-derived NO and concomitant formation of cGMP in preglomerular renin cell precursors supports recruitment of renin-expressing cells along preglomerular vessels, but not in the juxtaglomerular apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.