The expression of arachidonate 5-lipoxygenase (arachidonate:oxygen 5-oxidoreductase, EC 1.13.11.34) and the 5-lipoxygenase-activating protein (FLAP) genes in human tonsillar B cells and lymphoblastoid B-cell lines was demonstrated at the transcriptional level by reverse transcription-PCR analysis. Also, five lymphoblastoid T-cell lines were investigated and found to express the FLAP gene but not the 5-lipoxygenase gene, suggesting that the transcriptional regulation of these two genes is different. Western blot analysis of the cytosolic proteins from a lymphoblastoid B-cell line with an antiserum raised against purified human leukocyte 5-lipoxygenase revealed an immunoreactive band that comigrated with recombinant human 5-lipoxygenase. Intact B cells produced very low amounts of leukotriene B4 and 5-hydroxyeicosatetraenoic acid upon stimulation with the calcium ionophore A23187 and arachidonic acid, in comparison to the amounts formed by sonicates of these cells. However, preincubation of intact lymphoblastoid B cells with the glutathione-depleting agents azodicarboxylic acid bis(dimethylamide) or 1-chloro-2,4-dinitrobenzene prior to the addition of the calcium ionophore A23187 and arachidonic acid led to similar amounts of leukotriene B4 as were formed by sonicated cells. In contrast, the glutathione synthesis inhibitor buthionine sulfoximine diminished the cellular level of glutathione by >90% but did not influence the production of leukotriene B4 or 5-hydroxyeicosatetraenoic acid in intact cells. These results demonstrate that certain drugs affecting the redox status can stimulate the cryptic 5-lipoxygenase activity in intact lymphoblastoid B cells but that the mechanism ofthis activation is unclear and appears not to be directly related to intracellular glutathione levels.
Selenite and selenodiglutathione (GS-Se-SG) efficiently inhibited 5-lipoxygenase activity in sonicates of human monoclonal B-lymphocytes. The apparent IC50 of GS-Se-SG was 0.5 microM. The inhibitory effect of these compounds was observed within 10 min of incubation. In order to elucidate if the mechanism of inhibition by these compounds was result of direct interference with lipoxygenase or indirectly mediated by cellular factors, pure 15-lipoxygenase from soybeans was used as a model system for enzyme assays and electron spin resonance (ESR) measurements. Incubation of 15-lipoxygenase with a mixture of human placenta thioredoxin reductase (TR) or calf-thymus TR, selenite, and NADPH blocked the activity of the enzyme. Neither TR and NADPH nor selenite inhibited soybean lipoxygenase when incubated separately. These results suggest that selenite must be reduced to selenide in order to inhibit 5- and 15-lipoxygenase activities. Preincubation anaerobically of 15-lipoxygenase with chemically generated selenide (6 microM) resulted in a strong inhibition of activity, in assays with arachidonic acid in the presence of oxygen. In contrast, selenide exposed to air prior to preincubation did not inhibit the enzyme. Since selenide is known to be efficiently oxidized by oxygen and to form elemental selenium the results evidence that selenide was the inhibitor of lipoxygenase activity in the anaerobic preincubations. After incubation with TR, NADPH, and selenite or with chemically generated selenide, the ESR spectrum of 15-lipoxygenase changed: the dominant axial component with a peak at g = 6.1 decreased, and a rhombic form with a feature at g = 4.28 grew. The results suggest that selenide produced by the reduction of selenite reduces the active site iron to the ESR invisible state and changes the ligation geometry of the oxidized form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.