Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration.
SummaryStress adaptation is essential for neuronal health. While the fundamental role of mitochondria in neuronal development has been demonstrated, it is still not clear how adult neurons respond to alterations in mitochondrial function and how neurons sense, signal, and respond to dysfunction of mitochondria and their interacting organelles. Here, we show that neuron-specific, inducible in vivo ablation of the mitochondrial fission protein Drp1 causes ER stress, resulting in activation of the integrated stress response to culminate in neuronal expression of the cytokine Fgf21. Neuron-derived Fgf21 induction occurs also in murine models of tauopathy and prion disease, highlighting the potential of this cytokine as an early biomarker for latent neurodegenerative conditions.
Research efforts during the last decade have deciphered the basic molecular mechanisms governing mitochondrial fusion and fission. We now know that in mammalian cells mitochondrial fission is mediated by the large GTPase dynamin-related protein 1 (Drp1) acting in concert with outer mitochondrial membrane (OMM) proteins such as Fis1, Mff, and Mief1. It is also generally accepted that organelle fusion depends on the action of three large GTPases: mitofusins (Mfn1, Mfn2) mediating membrane fusion on the OMM level, and Opa1 which is essential for inner mitochondrial membrane fusion. Significantly, mutations in Drp1, Mfn2, and Opa1 have causally been linked to neurodegenerative conditions. Despite this knowledge, crucial questions such as to how fission of the inner and outer mitochondrial membranes are coordinated and how these processes are integrated into basic physiological processes such as apoptosis and autophagy remain to be answered in detail. In this review, we will focus on what is currently known about the mechanism of mitochondrial fission and explore the pathophysiological consequences of dysregulated organelle fission with a special focus on neurodegenerative conditions, including Alzheimer's, Huntington's and Parkinson's disease, as well as ischemic brain damage.
SummaryThe apoptotic protease activating factor 1 (Apaf1) is the main component of the apoptosome, and a crucial factor in the mitochondriadependent death pathway. Here we show that Apaf1 plays a role in regulating centrosome maturation. By analyzing Apaf1-depleted cells, we have found that Apaf1 loss induces centrosome defects that impair centrosomal microtubule nucleation and cytoskeleton organization. This, in turn, affects several cellular processes such as mitotic spindle formation, cell migration and mitochondrial network regulation. As a consequence, Apaf1-depleted cells are more fragile and have a lower threshold to stress than wild-type cells. In fact, we found that they exhibit low Bcl-2 and Bcl-X L expression and, under apoptotic treatment, rapidly release cytochrome c. We also show that Apaf1 acts by regulating the recruitment of HCA66, with which it interacts, to the centrosome. This function of Apaf1 is carried out during the cell life and is not related to its apoptotic role. Therefore, Apaf1 might also be considered a pro-survival molecule, whose absence impairs cell performance and causes a higher responsiveness to stressful conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.