Sensitized triplet-triplet annihilation (sTTA) is the most promising mechanism for pooling the energy of two visible photons, but its applications in solution were so far limited to organic solvents, with a current maximum of the excited-singlet state energy of 3.6 eV. By combining tailor-made iridium complexes with naphthalenes, we demonstrate blue-light driven upconversion in water with unprecedented singlet-state energies approaching 4 eV. The annihilators have outstanding excited-state reactivities enabling challenging photoreductions driven by sTTA. Specifically, we found that an arylbromide bond activation can be achieved with blue photons, and we obtained full conversion for the very energy-demanding decomposition of a persistent ammonium compound as typical water pollutant, not only with a cw laser but also with an LED light source. These results provide the first proof-of-concept for the usage of low-power light sources for challenging reactions employing blue-to-UV upconversion in water, and pave the way for the further development of sustainable light-harvesting applications.
The combination of π‐donating amido with π‐accepting pyridine coordination units in a tridentate chelate ligand causes a strong nephelauxetic effect in a homoleptic CrIII complex, which shifts its luminescence to the NIR‐II spectral range. Previously explored CrIII polypyridine complexes typically emit between 727 and 778 nm (in the red to NIR‐I spectral region), and ligand design strategies have so far concentrated on optimizing the ligand field strength. The present work takes a fundamentally different approach and focusses on increasing metal–ligand bond covalence to shift the ruby‐like 2E emission of CrIII to 1067 nm at 77 K.
Many organometallic iridium(III) complexes have photoactive excited states with mixed metal-to-ligand and intraligand charge transfer (MLCT/ILCT) character, which form the basis for numerous applications in photophysics and photochemistry. Cobalt(III) complexes with analogous MLCT excited-state properties seem to be unknown yet, despite the fact that iridium(III) and cobalt(III) can adopt identical low-spin d 6 valence electron configurations due to their close chemical relationship. Using a rigid tridentate chelate ligand (L CNC ), in which a central amido π-donor is flanked by two σ-donating N-heterocyclic carbene subunits, we obtained a robust homoleptic complex [Co(L CNC ) 2 ](PF 6 ), featuring a photoactive excited state with substantial MLCT character. Compared to the vast majority of isoelectronic iron(II) complexes, the MLCT state of [Co(L CNC ) 2 ](PF 6 ) is long-lived because it does not deactivate as efficiently into lower-lying metal-centered excited states; furthermore, it engages directly in photoinduced electron transfer reactions. The comparison with [Fe(L CNC ) 2 ](PF 6 ), as well as structural, electrochemical, and UV–vis transient absorption studies, provides insight into new ligand design principles for first-row transition-metal complexes with photophysical and photochemical properties reminiscent of those known from the platinum group metals.
Oxidase-type oxidation is an attractive strategy in organic synthesis due to the use of O 2 as the terminal oxidant. Organic photocatalysis can effect metal-free oxidase chemistry. Nevertheless, current methods are limited in reaction scope, possibly due to the lack of suitable photocatalysts. Here we report an isoquinoline-derived diaryl ketone-type photocatalyst, which has much enhanced absorption of blue and visible light compared to conventional diaryl ketones. This photocatalyst enables dehydrogenative cross-coupling of heteroarenes with unactivated and activated alkanes as well as aldehydes using air as the oxidant. A wide range of heterocycles with various functional groups are suitable substrates. Transient absorption and excitedstate quenching experiments point to an unconventional mechanism that involves an excited state "self-quenching" process to generate the N-radical cation form of the sensitizer, which subsequently abstracts a hydrogen atom from the alkane substrate to yield a reactive alkyl radical.
Conspectus Cyclometalated iridium(III) complexes are frequently employed in organic light emitting diodes, and they are popular photocatalysts for solar energy conversion and synthetic organic chemistry. They luminesce from redox-active excited states that can have high triplet energies and long lifetimes, making them well suited for energy transfer and photoredox catalysis. Homoleptic tris(cyclometalated) iridium(III) complexes are typically very hydrophobic and do not dissolve well in polar solvents, somewhat limiting their application scope. We developed a family of water-soluble sulfonate-decorated variants with tailored redox potentials and excited-state energies to address several key challenges in aqueous photochemistry. First, we aimed at combining enzyme with photoredox catalysis to synthesize enantioenriched products in a cyclic reaction network. Since the employed biocatalyst operates best in aqueous solution, a water-soluble photocatalyst was needed. A new tris(cyclometalated) iridium(III) complex provided enough reducing power for the photochemical reduction of imines to racemic mixtures of amines and furthermore was compatible with monoamine oxidase (MAO-N-9), which deracemized this mixture through a kinetic resolution of the racemic amine via oxidation to the corresponding imine. This process led to the accumulation of the unreactive amine enantiomer over time. In subsequent studies, we discovered that the same iridium(III) complex photoionizes under intense irradiation to give hydrated electrons as a result of consecutive two-photon excitation. With visible light as energy input, hydrated electrons become available in a catalytic fashion, thereby allowing the comparatively mild reduction of substrates that would typically only be reactive under harsher conditions. Finally, we became interested in photochemical upconversion in aqueous solution, for which it was desirable to obtain water-soluble iridium(III) compounds with very high triplet excited-state energies. This goal was achieved through improved ligand design and ultimately enabled sensitized triplet–triplet annihilation upconversion unusually far into the ultraviolet spectral range. Studies of photoredox catalysis, energy transfer catalysis, and photochemical upconversion typically rely on the use of organic solvents. Water could potentially be an attractive alternative in many cases, but photocatalyst development lags somewhat behind for aqueous solution compared to organic solvent. The purpose of this Account is to provide an overview of the breadth of new research perspectives that emerged from the development of water-soluble fac-[Ir(ppy)]3 complexes (ppy = 2-phenylpyridine) with sulfonated ligands. We hope to inspire the use of some of these or related coordination compounds in aqueous photochemistry and to stimulate further conceptual developments at the interfaces of coordination chemistry, photophysics, biocatalysis, and sustainable chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.