Periosteal grafts can aid in bone repair by providing bone progenitor cells and acting as a barrier to scar tissue. Unfortunately, these grafts have many of the same disadvantages as bone grafts (donor site morbidity and limited donor sites). In this article, we describe a method of synthesizing a periosteum-like material using acellular human dermis and osteoblasts or mesenchymal stem cells (MSC). We show that osteoblasts readily attach to and proliferate on the acellular human dermis in vitro. In addition, osteoblasts retained the potential for differentiation in response to bone morphogenetic protein stimulation. Cells grown on the acellular human dermis were efficiently transfected with adenoviruses with no evidence of cellular toxicity. To assess for in vivo cell delivery and bone-forming potential, the acellular human dermis was seeded with green fluorescent protein (GFP)-positive MSCs, transfected with bone morphogenetic protein 2, wrapped around the adductor muscle in syngeneic mice, and used to treat critical-sized mandibular defects in nude rats. After 3 weeks, GFP-positive cells were still present, and bone had replaced the interface between the muscle and the constructs. After 6 weeks, critical-sized bone defects had been successfully healed. In conclusion, we show that an acellular human dermis can be used to synthesize a tissue-engineered periosteum capable of delivering cells and osteoinductive proteins.
Although the majority of mesenchymal stem cells survive injury from ionizing radiation, this injury results in a significant decrease in cellular proliferation. Furthermore, the differentiation potential of irradiated mesenchymal stem cells in response to environmental stimuli is markedly diminished. Thus, the negative effects of ionizing radiation may result from a decreased pool of progenitor cells with limited differentiation potential. Proposed radioprotection strategies aiming to reduce tissue injury should therefore evaluate not only cellular survival but also cellular function.
Speech was poorer in many children with more extensive clefts. Children with CP±L had poorer speech compared to normative data of peers without CP±L, but the results indicated relatively good speech compared to speech of children with CP±L in previous studies.
In a setting where presurgical molding is unavailable and patients present at all ages, lip wound dehiscence is a relatively common complication in patients with bilateral complete clefts. The risk of dehiscence, however, is reduced when these cases are assigned to surgeons with experience with these types of clefts. We also found that the incidence of wound infection can be kept relatively low, even without the use of postoperative antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.