SummaryGene expression is a multistep process that involves transcription, translation and turnover of mRNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here, we simultaneously measured mRNA and protein abundance and turnover by parallel metabolic pulse labeling for more than 5,000 genes in mammalian cells. While mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Employing a quantitative model we obtain the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stabilities shared functional properties, suggesting that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression obtained in this study provides a rich resource and helps understanding the underlying design principles.
Animal microRNAs (miRNAs) regulate gene expression by inhibiting translation and/or by inducing degradation of target messenger RNAs. It is unknown how much translational control is exerted by miRNAs on a genome-wide scale. We used a new proteomic approach to measure changes in synthesis of several thousand proteins in response to miRNA transfection or endogenous miRNA knockdown. In parallel, we quantified mRNA levels using microarrays. Here we show that a single miRNA can repress the production of hundreds of proteins, but that this repression is typically relatively mild. A number of known features of the miRNA-binding site such as the seed sequence also govern repression of human protein synthesis, and we report additional target sequence characteristics. We demonstrate that, in addition to downregulating mRNA levels, miRNAs also directly repress translation of hundreds of genes. Finally, our data suggest that a miRNA can, by direct or indirect effects, tune protein synthesis from thousands of genes.
Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation, and translation. We developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing. Application to a human embryonic kidney cell line identified close to 800 proteins. To our knowledge, nearly one-third were not previously annotated as RNA binding, and about 15% were not predictable by computational methods to interact with RNA. Protein occupancy profiling provides a transcriptome-wide catalog of potential cis-regulatory regions on mammalian mRNAs and showed that large stretches in 3' UTRs can be contacted by the mRNA-bound proteome, with numerous putative binding sites in regions harboring disease-associated nucleotide polymorphisms. Our observations indicate the presence of a large number of mRNA binders with diverse molecular functions participating in combinatorial posttranscriptional gene-expression networks.
Posttranscriptional gene regulation relies on hundreds of RNA binding proteins (RBPs) but the function of most RBPs is unknown. The human RBP HuR/ELAVL1 is a conserved mRNA stability regulator. We used PAR-CLIP, a recently developed method based on RNA-protein crosslinking, to identify transcriptome-wide ∼26,000 HuR binding sites. These sites were on average highly conserved, enriched for HuR binding motifs and mainly located in 3' untranslated regions. Surprisingly, many sites were intronic, implicating HuR in mRNA processing. Upon HuR knockdown, mRNA levels and protein synthesis of thousands of target genes were downregulated, validating functionality. HuR and miRNA binding sites tended to reside nearby but generally did not overlap. Additionally, HuR knockdown triggered strong and specific upregulation of miR-7. In summary, we identified thousands of direct and functional HuR targets, found a human miRNA controlled by HuR, and propose a role for HuR in splicing.
Current methods for system-wide gene expression analysis detect changes in mRNA abundance, but neglect regulation at the level of translation. Pulse labeling with stable isotopes has been used to measure protein turnover rates, but this does not directly provide information about translation rates. Here, we developed pulsed stable isotope labeling by amino acids in cell culture (pSILAC) with two heavy isotope labels to directly quantify protein translation on a proteome-wide scale. We applied the method to cellular iron homeostasis as a model system and demonstrate that it can confidently identify proteins that are translationally regulated by iron availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.