Precipitation is a crucial driver for many environmental processes and weather radars are capable of providing precipitation information with high spatial and temporal resolution. However, radar-based quantitative precipitation estimates (QPE) are also subject to various potential uncertainties. This study explored the development, uncertainties and potentials of the hourly operational German radar-based and gauge-adjusted QPE called RADOLAN and its reanalyzed radar climatology dataset named RADKLIM in comparison to ground-truth rain gauge data. The precipitation datasets were statistically analyzed across various time scales ranging from annual and seasonal aggregations to hourly rainfall intensities in regard to their capability to map long-term precipitation distribution, to detect low intensity rainfall and to capture heavy rainfall. Moreover, the impacts of season, orography and distance from the radar on long-term precipitation sums were examined in order to evaluate dataset performance and to describe inherent biases. Results revealed that both radar products tend to underestimate total precipitation sums and particularly high intensity rainfall. However, our analyses also showed significant improvements throughout the RADOLAN time series as well as major advances through the climatologic reanalysis regarding the correction of typical radar artefacts, orographic and winter precipitation as well as range-dependent attenuation.
Quantitative precipitation estimates (QPE) derived from weather radars provide spatially and temporally highly resolved rainfall data. However, they are also subject to systematic and random bias and various potential uncertainties and therefore require thorough quality checks before usage. The dataset described in this paper is a collection of precipitation statistics calculated from the hourly nationwide German RADKLIM and RADOLAN QPEs provided by the German Weather Service (Deutscher Wetterdienst (DWD)), which were combined with rainfall statistics derived from rain gauge data for intercomparison. Moreover, additional information on parameters that can potentially influence radar data quality, such as the height above sea level, information on wind energy plants and the distance to the next radar station, were included in the dataset. The resulting two point shapefiles are readable with all common GIS and constitutes a spatially highly resolved rainfall statistics geodataset for the period 2006 to 2017, which can be used for statistical rainfall analyses or for the derivation of model inputs. Furthermore, the publication of this data collection has the potential to benefit other users who intend to use precipitation data for any purpose in Germany and to identify the rainfall dataset that is best suited for their application by a straightforward comparison of three rainfall datasets without any tedious data processing and georeferencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.