Abstract. The designs of hydraulic turbines are usually close kept corporation secrets. Therefore, the possibility of innovation and co-operation between different academic institutions regarding a specific turbine geometry is difficult. A Ph.D.-project at the Waterpower Laboratory, NTNU, aim to design several model Pelton turbines where all measurements, simulations, the design strategy, design software in addition to the physical model will be available to the public. In the following paper a short description of the methods and the test rig that are to be utilized in the project are described. The design will be based on empirical data and NURBS will be used as the descriptive method for the turbine geometry. In addition CFX and SPH simulations will be included in the design process. Each turbine designed and produced in connection to this project will be based on the experience and knowledge gained from the previous designs. The first design will be based on the philosophy to keep a near constant relative velocity through the bucket.
An analysis of the pressure in a runner channel of a low-specific speed Francis model runner during resonance is presented, which includes experiments and the development of a pressure model to estimate both the convective and acoustic pressure field from the measurements. The pressure was measured with four pressure sensors mounted in the runner hub along one runner channel. The mechanical excitation of the runner corresponded to the forced excitation from rotor-stator interaction. The rotational speed was used to control the excitation frequency. The measurements found a clear resonance peak in the pressure field excited by the second harmonic of the guide vane passing frequency. From the developed pressure model, the eigenfrequency and damping were estimated. The convective pressure field seems to diminish almost linearly from the inlet to outlet of the runner, while the acoustic pressure field had the highest amplitudes in the middle of the runner channel. At resonance, the acoustic pressure clearly dominated over the convective pressure. As the turbine geometry is available to the public, it provides an opportunity for the researchers to verify their codes at resonance conditions.
A hydrofoil resembling a high head Francis runner blade was submerged in a rectangular channel and attached to the walls in a fixed-beam configuration. The hydrofoil was excited by piezoelectric Macrofiber composite actuators (MFCs), and the vibration was measured at the trailing edge with Laser Doppler Vibrometry (LDV) and semiconductor strain gauges. The hydrofoil was exposed to water velocities ranging from 0 to 25 m/s. Lock-in occurred at approx. 11 m/s. The damping increased linearly with the water velocity, with a slope of 0.02 %/(m/s) below lock-in, and 0.13 %/(m/s) above lock-in. The natural frequency of the foil increased slightly with increasing water velocity below lock-in, due to the added stiffness of the passing water. Additionally, the natural frequency increased significantly when passing through lock-in, due to the vortex shedding phase shift.
The rotor stator interaction in a low specific speed Francis model turbine and a pump-turbine is analyzed utilizing pressure sensors in the vaneless space and in the guide vane cascade. The measurements are analyzed relative to the runner angular position by utilizing an absolute encoder mounted on the shaft end. From the literature, the pressure in the analyzed area is known to be a combination of two effects: the rotating runner pressure and the throttling of the guide vane channels. The measured pressure is fitted to a mathematical pressure model to separate the two effects for two different runners. One turbine with 15+15 splitter blades and full-length blades and one pump-turbine with six blades are investigated. The blade loading on the two runners is different, giving different input for the pressure model. The main findings show that the pressure fluctuations in the guide vane cascade are mainly controlled by throttling for the low blade loading case and the rotating runner pressure for the higher blade loading case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.