The main fast-acting inhibitory receptors in the mammalian brain are g-aminobutyric acid type-A (GABA A ) receptors for which neurosteroids, a subclass of steroids synthesized de novo in the brain, constitute a group of endogenous ligands with the most potent positive modulatory actions known. Neurosteroids can act on all subtypes of GABA A receptors, with a preference for d-subunitcontaining receptors that mediate extrasynaptic tonic inhibition. Pathological conditions characterized by emotional and motivational disturbances are often associated with perturbation in the levels of endogenous neurosteroids. We studied the effects of ganaxolone (GAN)-a synthetic analog of endogenous allopregnanolone that lacks activity on nuclear steroid receptors-on the mesolimbic dopamine (DA) system involved in emotions and motivation. A single dose of GAN in young mice induced a dose-dependent, longlasting neuroplasticity of glutamate synapses of DA neurons ex vivo in the ventral tegmental area (VTA). Increased a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/N-methyl-D-aspartate ratio and rectification of AMPA receptor responses even at 6 days after GAN administration suggested persistent synaptic targeting of GluA2-lacking AMPA receptors. This glutamate neuroplasticity was not observed in GABA A receptor d-subunit-knockout (d-KO) mice. GAN (500 nM) applied locally to VTA selectively increased tonic inhibition of GABA interneurons and triggered potentiation of DA neurons within 4 h in vitro. Place-conditioning experiments in adult wild-type C57BL/6J and d-KO mice revealed aversive properties of repeated GAN administration that were dependent on the d-subunits. Prolonged neuroadaptation to neurosteroids in the VTA might contribute to both the physiology and pathophysiology underlying processes and changes in motivation, mood, cognition, and drug addiction.
The β-keto amphetamine (cathinone, β-KA) designer drugs such as mephedrone (4-methylmethcathinone, 4-MMC) show a large degree of structural similarity to amphetamines like methamphetamine (METH). However, little is currently known about whether these substances also share the potential neurotoxic properties of their non-keto amphetamine counterparts, or what mechanisms could be involved. Here, we evaluate the cytotoxicity of β-KAs in SH-SY5Y cells using lactate dehydrogenase (LDH) assays, assess the redox potential of a range of β-KAs and non-keto amphetamines using the sensitive redox indicator 2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1), and explore the effect of 4-MMC on the formation of protein adducts using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) and on the mitochondrial respiratory chain using high-resolution respirometry. We show that treatment with β-KAs increases LDH release. Further, we demonstrate that even under physiological pH, β-KAs are effective and selective-as compared with their non-keto analogues-reductants in the presence of electron acceptors. Increased pH (range 7.6-8.0) greatly enhanced the reactivity up to sixfold. We found no evidence of protein adduct formation, suggesting the reactivity is due to direct electron transfer by the β-KAs. Finally, we show that 4-MMC and METH produce dissimilar effects on the respiratory chain. Our results indicate that β-KAs such as 4-MMC possess cytotoxic properties in vitro. Furthermore, in the presence of an electron-accepting redox partner, the ketone moiety of β-KAs is vital for pH-dependent redox reactivity. Further work is needed to establish the importance of β-KA redox properties and its potential toxicological importance in vivo.
The increased use of cathinone-type designer drugs, known as legal highs, has led to concerns about their potential neurotoxicity due to their similarity to methamphetamine (METH). Therefore, closer investigations of their toxic effects are needed. We investigated the effects of the cathinones 4-methylmethcathinone (4-MMC) and 3,4-methylenedioxymethcathinone (MDMC) and the amphetamine METH on cytotoxicity and mitochondrial respiration in SH-SY5Y neuroblastoma cells. We also investigated the contribution of reactive species, dopamine, Bcl-2 and tumor necrosis factor α (TNFα) on toxicity. Finally, we investigated the effect of cathinone breakdown products using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry and studied their involvement in toxicity. We observed dose-dependent increases in cytotoxicity and decreases in mitochondrial respiration following treatment with all cathinones and amphetamines. Glutathione depletion increases amphetamine, but not cathinone toxicity. Bcl-2 and TNFα pathways are involved in toxicity but dopamine levels are not. We also show that cathinones, but not amphetamines, spontaneously produce reactive species and cytotoxic methylbenzamide breakdown products when in aqueous solution. These results provide an important first insight into the mechanisms of cathinone cytotoxicity and pave the way for further studies on cathinone toxicity in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.