Immunoglobulin (Ig) variable (V) region genes are assembled in precursor B (pre-B) lymphocytes from multiple germline segments. The heavy-chain V-region gene is composed of variable (VH), diversity (D) and joining (JH) segments; kappa (K) and lambda (lambda) light-chain V-region genes have analogous VL and JL segments. Assembly of Ig V-gene segments, as well as those of the highly related T-cell receptor, is regulated at several levels and shows both stage and tissue specificity; for example Ig heavy-chain V-gene assembly precedes that of Ig light chains during B-cell differentiation. Joining of all classes of V-gene segments involves conserved recognition sequences that are probably targets for a common recombinase. Evidence has been presented suggesting that rearrangement of specific classes of segments is regulated by modulation of their accessibility to the recombinase. To elucidate mechanisms which control V-region gene assembly, we have investigated the effect of flanking gene expression on the frequency at which introduced V-gene segments are assembled in pre-B cell lines. Our findings suggest that transcription may play a direct role in the regulation of immunoglobulin V-gene assembly.
While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain resulted in upregulation of genes involved in innate immunity, which we found to be dependent on not only the canonical p38-mediated innate immune signaling pathway but also on the mitochondrial unfolded protein response. Both of these pathways are absolutely required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitochondrial unfolded protein response can act on the same innate immunity genes to promote resistance to bacterial pathogens, and that input from the mitochondria can extend longevity by signaling through these two pathways. Combined, this indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.