Machine learning is vulnerable to adversarial examples-inputs designed to cause models to perform poorly. However, it is unclear if adversarial examples represent realistic inputs in the modeled domains. Diverse domains such as networks and phishing have domain constraints-complex relationships between features that an adversary must satisfy for an attack to be realized (in addition to any adversary-specific goals). In this paper, we explore how domain constraints limit adversarial capabilities and how adversaries can adapt their strategies to create realistic (constraint-compliant) examples. In this, we develop techniques to learn domain constraints from data, and show how the learned constraints can be integrated into the adversarial crafting process. We evaluate the efficacy of our approach in network intrusion and phishing datasets and find:(1) up to 82% of adversarial examples produced by state-of-the-art crafting algorithms violate domain constraints, (2) domain constraints are robust to adversarial examples; enforcing constraints yields an increase in model accuracy by up to 34%. We observe not only that adversaries must alter inputs to satisfy domain constraints, but that these constraints make the generation of valid adversarial examples far more challenging.
Public clouds provide scalable and cost-efficient computing through resource sharing. However, moving from traditional on-premises service management to clouds introduces new challenges; failure to correctly provision, maintain, or decommission elastic services can lead to functional failure and vulnerability to attack. In this paper, we explore a broad class of attacks on clouds which we refer to as cloud squatting. In a cloud squatting attack, an adversary allocates resources in the cloud (e.g., IP addresses) and thereafter leverages latent configuration to exploit prior tenants. To measure and categorize cloud squatting we deployed a custom Internet telescope within the Amazon Web Services us-east-1 region. Using this apparatus, we deployed over 3 million servers receiving 1.5 million unique IP addresses (≈ 56% of the available pool) over 101 days beginning in March of 2021. We identified 4 classes of cloud services, 7 classes of third-party services, and DNS as sources of exploitable latent configurations. We discovered that exploitable configurations were both common and in many cases extremely dangerous; we received over 5 million cloud messages, many containing sensitive data such as financial transactions, GPS location, and PII. Within the 7 classes of third-party services, we identified dozens of exploitable software systems spanning hundreds of servers (e.g., databases, caches, mobile applications, and web services). Lastly, we identified 5446 exploitable domains spanning 231 eTLDs-including 105 in the top 10 000 and 23 in the top 1000 popular domains. Through tenant disclosures we have identified several root causes, including (a) a lack of organizational controls, (b) poor service hygiene, and (c) failure to follow best practices. We conclude with a discussion of the space of possible mitigations and describe the mitigations to be deployed by Amazon in response to this study.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.