The effects of total organic carbon (TOC) and UV-B radiation on Zn toxicity and bioaccumulation in a Rocky Mountain stream community were assessed in a 10-d microcosm experiment. We predicted that TOC would mitigate Zn toxicity and that the combined effects of Zn and UV-B would be greater than Zn alone. However, TOC did not mitigate Zn toxicity in this study. In fact, treatments with TOC plus Zn had significantly lower community respiration as compared with the controls and Zn concentrations associated with the periphyton increased in the presence of TOC. UV-B had no additive effect on periphyton Zn accumulation or community respiration. Heptageniid mayflies (Ephemeroptera) were particularly sensitive to Zn, and reduced abundances were observed in all Zn treatments. UV-B did not additionally impact Heptageniid abundances; however UV-B did have a greater effect on macroinvertebrate drift than Zn alone. Ephemeroptera, Plecoptera, and Trichoptera (groups typically classified as sensitive to disturbance) were found in highest numbers in the drift of UV-B + Zn treatments. Measures of Zn accumulation in the caddisfly Arctopsyche grandis, periphyton biomass, and total macroinvertebrate abundance were not sufficiently sensitive to differentiate effects of TOC, UV-B, and Zn. These results indicate that UV-B and TOC affect Zn bioavailability and toxicity by impacting species abundance, behavior, and ecosystem processes.
The Sand Hills subdivision of the Southeastern Plains ecoregion has been impacted by historical land uses over the past two centuries and, with the additive effects of contemporary land use, determining reference condition for streams in this region is a challenge. We identified reference condition based on the combined use of 3 independent selection methods. Method 1 involved use of a multivariate disturbance gradient derived from several stressors, method 2 was based on variation in channel morphology, and method 3 was based on passing 6 of 7 environmental criteria. Sites selected as reference from all 3 methods were considered primary reference, whereas those selected by 2 or 1 methods were considered secondary or tertiary reference, respectively. Sites not selected by any of the methods were considered non-reference. In addition, best professional judgment (BPJ) was used to exclude some sites from any reference class, and comparisons were made to examine the utility of BPJ. Non-metric multidimensional scaling indicated that use of BPJ may help designate non-reference sites when unidentified stressors are present. The macroinvertebrate community measures Ephemeroptera, Plecoptera, Trichoptera richness and North Carolina Biotic Index showed no differences between primary and secondary reference sites when BPJ was ignored. However, there was no significant difference among primary, secondary, and tertiary reference sites when BPJ was used. We underscore the importance of classifying reference conditions, especially in regions that have endured significant anthropogenic activity. We suggest that the use of secondary reference sites may enable construction of models that target a broader set of management interests.
An understanding of how fish communities differ among river basin, watershed, and stream reach spatial scales and the factors that influence these differences can help in the design of effective conservation programs and the development of reference models that appropriately represent biota under relatively undisturbed conditions. We assessed the heterogeneity among fish assemblages in first‐ to fourth‐order stream sites from four river basins (Savannah, Chattahoochee, Cape Fear, and Pee Dee rivers) within the Sand Hills ecoregion of the southeastern USA and compared it with the heterogeneity associated with watershed and stream reach spatial scales. Fifty‐five species of fish representing 15 families were collected by electrofishing, with the most speciose families being Cyprinidae, Centrarchidae, Percidae, Ictaluridae, and Catostomidae. Constrained ordination identified clearly demarcated species assemblages among river basins as well as subbasin environmental variables that affected fish species composition; the amounts of variance attributable to basin, watershed, and stream reach spatial scales were roughly equivalent. Prominent differences occurred between Gulf of Mexico coast and Atlantic coast river basins, but differences among Atlantic coast basins were also apparent. Key variables at the watershed scale included watershed size, relief, extent of anthropogenic disturbance, and forest cover; key variables at the stream reach scale included instream habitat quality, proximity to a larger stream, and stream width. Fish assemblage collective and functional properties were more strongly influenced by variables acting at watershed and stream reach spatial scales than by differences among basins. Species richness peaked at intermediate levels of habitat quality as a likely result of biotic homogenization, indicating that the least disturbed sites within the region do not necessarily possess the highest species richness. Failure to consider this may lead to the overrating of moderately disturbed sites and the underrating of minimally disturbed sites, thus contributing to false conclusions about fish assemblage integrity. Received September 15, 2015; accepted December 15, 2015 Published online April 19, 2016
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.