An extensive experimental search for solid forms of the antipsychotic compound olanzapine identified 60 distinct solid forms including three nonsolvated polymorphs, 56 crystalline solvates, and an amorphous phase. XPac analysis of the 35 experimental crystal structures (30 from this work and 5 from the CSD) containing olanzapine show that they contain a specific, dispersion-bound, dimer structure which can adopt various arrangements and accommodate diverse solvents to produce structures with a similar moderate packing efficiency to form I. The crystal energy landscape confirms the inability of olanzapine to pack with an efficiency of more than 70%, explains the role of solvent in stabilizing the solvate structures, and identifies a hypothetical structural type that offers an explanation for the inability to obtain the metastable forms II and III separately. The calculations find that structures that do not contain the observed dimer are thermodynamically feasible, suggesting that kinetic effects are responsible for all the observed structures being based on the dimer. Thus, this extensive screen probably has not found all possible physical forms of olanzapine, and further form diversity could be targeted with a better understanding of the role of kinetics in its crystallization.
The authors identify some key definitions of 'information literacy' and initiatives concerned with imparting information literacy skills. They identify limitations in taking an approach to information literacy which assumes that it can be boiled down to a list of skills. Alternative conceptions of information literacy are described. Previous research has identified a lack of information on how students experience and define information literacy. The authors describe the student response to a one-semester credit-bearing class in information literacy, taken by business students at the University of Strathclyde, and relate it to two models of information literacy. They go on to discuss two issues in the light of previous developments and their own research: appropriate pedagogic methods for educating for information literacy and information literacy as a discipline in its own right. They conclude by identifying further areas for research and by recommending that information scientists should lead the way in defining this growing area. 50 1 2
The molecular structure of tetra-tert-butyldiphosphine has been determined in the gas phase by electron diffraction using the new DYNAMITE method and in the crystalline phase by X-ray diffraction. Ab initio methods were employed to gain a greater understanding of the structural preferences of this molecule in the gas phase, and to determine the intrinsic P-P bond energy, using recently described methods. Although the P-P bond is relatively long [GED 226.4(8) pm; X-ray 223.4(1) pm] and the dissociation energy is computed to be correspondingly small (150.6 kJ mol(-1)), the intrinsic energy of this bond (258.2 kJ mol(-1)) is normal for a diphosphine. The gaseous data were refined using the new Edinburgh structure refinement program ed@ed, which is described in detail. The molecular structure of gaseous P(2)Bu(t)(4) is compared to that of the isoelectronic 1,1,2,2-tetra-tert-butyldisilane. The molecules adopt a conformation with C(2) symmetry. The P-P-C angles returned from the gas electron diffraction refinement are 118.8(6) and 98.9(6) degrees, a difference of 20 degrees, whilst the C-P-C angle is 110.3(8) degrees. The corresponding parameters in the crystal are 120.9(1), 99.5(1) and 109.5(1) degrees. There are also large deformations within the tert-butyl groups, making the DYNAMITE analysis for this molecule extremely important.
Silk nanoparticles are viewed as promising vectors for intracellular drug delivery as they can be taken up into cells by endocytosis and trafficked to lysosomes, where lysosomal enzymes and the low pH trigger payload release. However, the subsequent degradation of the silk nanoparticles themselves still requires study. Here, we report the responsiveness of native and PEGylated silk nanoparticles to degradation following exposure to proteolytic enzymes (protease XIV and α-chymotrypsin) and papain, a cysteine protease. Both native and PEGylated silk nanoparticles showed similar degradation behavior over a 20 day exposure period (degradation rate: protease XIV > papain ≫ α-chymotrypsin). Within 1 day, the silk nanoparticles were rapidly degraded by protease XIV, resulting in a ∼50% mass loss, an increase in particle size, and a reduction in the amorphous content of the silk secondary structure. By contrast, 10 days of papain treatment was necessary to observe any significant change in nanoparticle properties, and α-chymotrypsin treatment had no effect on silk nanoparticle characteristics over the 20-day study period. Silk nanoparticles were also exposed ex vivo to mammalian lysosomal enzyme preparations to mimic the complex lysosomal microenvironment. Preliminary results indicated a 45% reduction in the silk nanoparticle size over a 5-day exposure. Overall, the results demonstrate that silk nanoparticles undergo enzymatic degradation, but the extent and kinetics are enzyme-specific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.