Summary Background Huntington’s disease (HD) is an autosomal dominant, fully penetrant, neurodegenerative disease that most commonly affects adults in mid-life. Our aim was to identify sensitive and reliable biomarkers in premanifest carriers of mutated HTT and in individuals with early HD that could provide essential methodology for the assessment of therapeutic interventions. Methods This multicentre study uses an extensive battery of novel assessments, including multi-site 3T MRI, clinical, cognitive, quantitative motor, oculomotor, and neuropsychiatric measures. Blinded analyses were done on the baseline cross-sectional data from 366 individuals: 123 controls, 120 premanifest (pre-HD) individuals, and 123 patients with early HD. Findings The first participant was enrolled in January, 2008, and all assessments were completed by August, 2008. Cross-sectional analyses identified significant changes in whole-brain volume, regional grey and white matter differences, impairment in a range of voluntary neurophysiological motor, and oculomotor tasks, and cognitive and neuropsychiatric dysfunction in premanifest HD gene carriers with normal motor scores through to early clinical stage 2 disease. Interpretation We show the feasibility of rapid data acquisition and the use of multi-site 3T MRI and neurophysiological motor measures in a large multicentre study. Our results provide evidence for quantifiable biological and clinical alterations in HTT expansion carriers compared with age-matched controls. Many parameters differ from age-matched controls in a graded fashion and show changes of increasing magnitude across our cohort, who range from about 16 years from predicted disease diagnosis to early HD. These findings might help to define novel quantifiable endpoints and methods for rapid and reliable data acquisition, which could aid the design of therapeutic trials. Funding CHDI/High Q Foundation.
Huntington disease is devastating to patients and their families - with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course, and a combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene that encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confer toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype, as well as the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials. For an illustrated summary of this Primer, visit: http://go.nature.com/hPMENh.
Huntingtin is a 350-kilodalton protein of unknown function that is mutated in Huntington's disease (HD), a neurodegenerative disorder. The mutant protein is presumed to acquire a toxic gain of function that is detrimental to striatal neurons in the brain. However, loss of a beneficial activity of wild-type huntingtin may also cause the death of striatal neurons. Here we demonstrate that wild-type huntingtin up-regulates transcription of brain-derived neurotrophic factor (BDNF), a pro-survival factor produced by cortical neurons that is necessary for survival of striatal neurons in the brain. We show that this beneficial activity of huntingtin is lost when the protein becomes mutated, resulting in decreased production of cortical BDNF. This leads to insufficient neurotrophic support for striatal neurons, which then die. Restoring wild-type huntingtin activity and increasing BDNF production may be therapeutic approaches for treating HD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.