The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQii in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQll in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA4 gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedAl resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted PedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae. These similarities suggest strongly that the PedD product is involved in the translocation of pediocin PA-1.
Production of bacteriocin activity designated pediocin PA-1 was associated with the presence of a 6.2-megadalton plasmid in Pediococcus acidilactici PAC1.0. The bacteriocin exhibited activity against P. acidilactici, P. pentosaceus, Lactobacillus plantarum, L. casei, L. bifermentans, and Leuconostoc mesenteroides subsp. dextranicum. Partial characterization of pediocin PA-1 is described. The molecular weight of pediocin PA-1 was ca. 16,500. Additionally, strain PAC1.0 was found to contain a 23-megadalton plasmid associated with sucrose-fermenting ability.
The bacteriocin produced by Pediococcus acidilactici PAC 1.0, previously designated PA-1 bacteriocin, was found to be inhibitory and bactericidal for Listeria monocytogenes. A dried powder prepared from PAC 1.0 culture supernatant fortified with 10% milk powder was found to contain bacteriocin activity. An MIC against L. monocytogenes and lytic effects in broth cultures were determined. Inhibition by PA-1 powder occurred over the pH range 5.5 to 7.0 and at both 4 and 32°C. In addition, inhibition of L. monocytogenes was demonstrated in several food systems including dressed cottage cheese, half-and-half cream, and cheese sauce.
Transfer of the broad-host-range resistance plasmid pIP501 from Streptococcus faecalis to Pediococcus pentosaceus and Pediococcus acidilactici occurred between cells immobilized on nitrocellulose filters in the presence of DNase. Expression of the pIP501-linked erythromycin and chloramphenicol resistance determinants was observed in transconjugants. Intrageneric transfer of pIP501 from a P. pentosaceus donor to various pediococcal recipients occurred at frequencies of 10(-4) to 10(-7) transconjugants per input donor cell. Intergeneric transfer of plasmid pIP501 from P. pentosaceus to S. faecalis, Streptococcus sanguis (Challis), and Streptococcus lactis was observed. Similar mating experiments showed no evidence for the transfer of the broad-host-range R-plasmid pAM beta 1 to Pediococcus spp. recipients.
Transfer of sucrose fermentation ability, nisin production, and nisin resistance from Streptococcus lactis to S. lactis and Streptococcus lactis subsp. diacetylactis occurred between cells immobilized on nitrocellulose filters in the presence of DNase. Transconjugants were able to act as donors to transfer the Suc-Nis phenotype in subsequent mating. No changes in sensitivity to lytic phage c2 were noted in S. lactis transconjugants. However, temperature-independent restriction of lytic phage 18-16 was noted in transconjugants of S. lactis subsp. diacetylactis 18-16. Adsorption studies with phage-resistant transconjugants showed that resistance was not due to lack of adsorption by the lytic phage. Physical evidence for the presence of introduced plasmid DNA was not found in lysates of transconjugants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.