Sepsis is a major cause of neonatal mortality and morbidity worldwide. A recent report suggested murine neonatal host defense against infection could be compromised by immunosuppressive CD71+ erythroid splenocytes. We examined the impact of CD71+ erythroid splenocytes on murine neonatal mortality to endotoxin challenge or polymicrobial sepsis and characterized circulating CD71+ erythroid (CD235a+) cells in human neonates. Adoptive transfer or antibody-mediated reduction of neonatal CD71+ erythroid splenocytes did not alter murine neonatal survival to endotoxin challenge or polymicrobial sepsis challenge. Ex vivo immunosuppression of stimulated adult CD11b+ cells was not limited to neonatal splenocytes as it also occurred with adult and neonatal bone marrow. Animals treated with anti-CD71 antibody showed reduced splenic bacterial load following bacterial challenge compared to isotype-treated mice. However, adoptive transfer of enriched CD71+ erythroid splenocytes to CD71+-reduced animals did not reduce bacterial clearance. Human CD71+CD235a+ cells were common among cord blood mononuclear cells and were shown to be reticulocytes. In summary, a lack of effect on murine survival to polymicrobial sepsis following adoptive transfer or diminution of CD71+ erythroid splenocytes under these experimental conditions suggests the impact of these cells on neonatal infection risk and progression may be limited. An unanticipated immune priming effect of anti-CD71 antibody treatment was likely responsible for the reported enhanced bacterial clearance, rather than a reduction of immunosuppressive CD71+ erythroid splenocytes. In humans, the well-described rapid decrease in circulating reticulocytes after birth suggests they may have a limited role in reducing inflammation secondary to microbial colonization.
Unchecked collaboration between islet-reactive T and B lymphocytes drives type 1 diabetes (T1D). In the healthy setting, CD8 T regulatory cells (Tregs) terminate ongoing T-B interactions. We determined that specific CD8 Tregs from NOD mice lack suppressive function, representing a previously unreported regulatory cell deficit in this T1D-prone strain. NOD mice possess 11-fold fewer Ly-49 + CD8 Tregs than nonautoimmune mice, a deficiency that worsens as NOD mice age toward diabetes and leaves them unable to regulate CD4 T follicular helper cells. As IL-15 is required for Ly-49 + CD8 Treg development, we determined that NOD macrophages inadequately trans-present IL-15. Despite reduced IL-15 trans-presentation, NOD Ly-49 + CD8 Tregs can effectively transduce IL-15-mediated survival signals when they are provided. Following stimulation with an IL-15/IL-15Ra superagonist complex, Ly-49 + CD8 Tregs expanded robustly and became activated to suppress the Ag-specific Ab response. IL-15/IL-15Ra superagonist complex-activated CD8 + CD122 + T cells also delayed diabetes transfer, indicating the presence of an underactivated CD8 T cell subset with regulatory capacity against late stage T1D. We identify a new cellular contribution to anti-islet autoimmunity and demonstrate the correction of this regulatory cell deficit. Infusion of IL-15-activated CD8 Tregs may serve as an innovative cellular therapy for the treatment of T1D.
Autoimmune diseases such as type 1 diabetes (T1D) arise from unrestrained activation of effector lymphocytes that destroy target tissues. Many efforts have been made to eliminate these effector lymphocytes, but none has produced a long-term cure. An alternative to depletion therapy is to enhance endogenous immune regulation. Among these endogenous alternatives, naturally occurring Igs have been applied for inflammatory disorders but have lacked potency in antigen-specific autoimmunity. We hypothesized that naturally occurring polyclonal IgMs, which represent the majority of circulating, noninduced antibodies but are present only in low levels in therapeutic Ig preparations, possess the most potent capacity to restore immune homeostasis. Treatment of diabetes-prone NOD mice with purified IgM isolated from Swiss Webster (SW) mice (nIgM) reversed new-onset diabetes, eliminated autoreactive B lymphocytes, and enhanced regulatory T-cell (Treg) numbers both centrally and peripherally. Conversely, IgM from prediabetic NOD mice could not restore this endogenous regulation, which represents an unrecognized component of T1D pathogenesis. Of note, IgM derived from healthy human donors was similarly able to expand human CD4 Tregs in humanized mice and produced permanent diabetes protection in treated NOD mice. Overall, these studies demonstrate that a potent, endogenous regulatory mechanism, nIgM, is a promising option for reversing autoimmune T1D in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.