The robustness of robot calibration with respect to sensor noise is sensitive to the manipulator poses used to collect measurement data. In this paper we propose an algorithm based on a constrained optimization method, which allows us to choose a set of measurement configurations. It works by selecting iteratively one pose after another inside the workspace. After a few steps, a set of configurations is obtained, which maximizes an index of observability associated with the identification Jacobian. This algorithm has been shown, in a former work, to be sensitive to local minima. This is why we propose here meta-heuristic methods to decrease this sensibility of our algorithm. Finally, a validation through the simulation of a calibration experience shows that using selected configurations significantly improve the kinematic parameter identification by dividing by 10-15 the noise associated with the results. Also, we present an application to the calibration of a parallel robot with a vision-based measurement device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.