The ice‐covered period on lakes in the northern hemisphere has often been neglected or assumed to have less importance relative to the open water season. However, recent studies challenge this convention, suggesting that the winter period is more dynamic than previously thought. In this review, we synthesize the current understanding of under‐ice carbon dioxide (CO2) and methane (CH4) dynamics, highlighting the annual importance of CO2 and CH4 emissions from lakes at ice‐melt. We compiled data from 25 studies that showed that the ice‐melt period represents 17% and 27% of the annual CO2 and CH4 emissions, respectively. We also found evidence that the magnitude and type of emission (i.e., CO2 and CH4) varies with characteristics of lakes including geographic location, lake morphometry, and physicochemical conditions. The scarcity of winter and spring carbon data from northern lakes represents a major gap in our understanding of annual budgets in these lakes and calls for future research during this key period.
Headwater streams can be important sources of carbon dioxide (CO 2 ) and methane (CH 4 ) to the atmosphere. However, the influence of groundwater-stream connectivity on the patterns and sources of carbon (C) gas evasion is still poorly understood. We explored these connections in the boreal landscape through a detailed study of a 1.4 km lake outlet stream that is hydrologically fed by multiple topographically driven groundwater input zones. We measured stream and groundwater dissolved organic C (DOC), CO 2 , and CH 4 concentrations every 50 m biweekly during the ice-free period and estimated in-stream C gas production through a mass balance model and independent estimates of aquatic metabolism. The spatial pattern of C gas concentrations was consistent over time, with peaks of both CH 4 and CO 2 concentrations occurring after each groundwater input zone. Moreover, lateral C gas inputs from riparian soils were the major source of CO 2 and CH 4 to the stream. DOC mineralization and CH 4 oxidation within the stream accounted for 17-51% of stream CO 2 emissions, and this contribution was the greatest during relatively higher flows. Overall, our results illustrate how the nature and arrangement of groundwater flowpaths can organize patterns of stream C concentrations, transformations, and emissions by acting as a direct source of gases and by supplying organic substrates that fuel aquatic metabolism. Hence, refined assessments of how catchment structure influences the timing and magnitude of groundwaterstream connections are crucial for mechanistically understanding and scaling C evasion rates from headwaters.
Inland lake and river ice are underappreciated resources threatened by climate change. Over the past 150 years, seasonal ice cover duration on Northern Hemisphere lakes and rivers has been decreasing. Ice-cover loss affects ecosystem services in various ways, but comprehensive studies evaluating the interplay between society and ice-covered lakes and rivers are lacking. For the first time, we provide quantitative evidence of the diverse ways that the loss of inland ice may reduce cultural ecosystem services. AbstractPeople extensively use lakes and rivers covered by seasonal ice. Although ice cover duration has been declining over the past 150 years for Northern Hemisphere freshwaters, we know relatively little about how ice loss directly affects humans. Here, we synthesize the cultural ecosystem services (i.e., services that provide intangible or nonmaterial benefits) and associated benefits supported by inland ice. We also provide, for the first time, empirical examples that give quantitative evidence for a winter warming effect on a wide range of ice-related cultural ecosystem services and benefits. We show that in recent decades, warmer air temperatures delayed the opening date of winter ice roads and led to cancellations of spiritual ceremonies, outdoor ice skating races, and ice fishing tournaments. Additionally, our synthesis effort suggests unexploited data sets that allow for the use of integrative approaches to evaluate the interplay between inland ice loss and society.With the majority of the world's lakes located at higher latitudes (>45 N) in the Northern Hemisphere (Verpoorter et al. 2014), seasonal ice cover is a common phenomenon (Denfeld et al. 2018). As a result of climate change, shorter ice duration or incomplete ice cover are becoming more common around the world (Magnuson et al. 2000;Benson et al. 2012;Sharma et al. 2019). Projected trends for air temperature and snow cover in the Northern Hemisphere suggest that seasonal ice cover duration will continue to decline (Shuter et al. 2013;Yao et al. 2014;Magee and Wu 2017;Hewitt et al. 2018;Sharma et al. 2019).Such losses in lake and river ice do not occur without reducing the uses of ice cover by people. However, it appears that the cultural ecosystem services and benefits that ice
Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding. We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha–Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
Scientific Significance StatementMetabolic stoichiometry predicts that dissolved oxygen (O2) and carbon dioxide (CO2) in aquatic ecosystems should covary inversely; however, field observations often diverge from theoretical expectations. Here, we propose a suite of metrics describing this O2 and CO2 decoupling and introduce a conceptual framework for interpreting these metrics within aquatic ecosystems. Within this framework, we interpret cross‐system patterns of high‐frequency O2 and CO2 measurements in 11 northern lakes and extract emergent insights into the metabolic behavior and the simultaneous roles of chemical and physical forcing in shaping ecosystem processes. This approach leverages the power of high‐frequency paired O2–CO2 measurements, and yields a novel, integrative aquatic system typology which can also be applicable more broadly to streams and rivers, wetlands and marine systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.