A growing demand for alternative sources of texturized vegetable protein (TVP) has resulted from various factors including plant allergies, perceived health risks associated with genetically modified organisms (GMO), animal welfare beliefs, and lifestyle choices. Soy and wheat have been the primary ingredients in TVP over the past few decades, but desires for clean label ingredients (especially non-GMO and nonallergenic) have led to demand for alternative plant protein ingredients such as pea protein. To understand the capabilities of pea protein to create meat-like texture with additions of another protein source that also contributes starch, this study focused on extruding pea protein with increasing amounts of chickpea flour (CPF). Six treatments, with inclusions of CPF ranging from 0 to 50%, were processed on a twinscrew extruder to determine the optimal ratio of pea protein isolate to CPF. Bulk density was the greatest with 20% CPF (272 g/L) and resulted in the lowest water holding capacity (55.5%). Texture profile analysis (TPA) hardness, springiness, and chewiness showed optimum results for the 10 and 20% CPF (674 to 1024 g, 72.1 to 80.7%, 400 to 439, respectively). With no CPF addition, protein interactions created a strong network exhibiting extreme springiness (91.3%). Addition of CPF greater than 20% resulted in a detrimental decrease in hardness by 38 to 84% and chewiness by 73 to 92%. Phase transition analysis and specific mechanical energy data provided a greater understanding of the degree of texturization during extrusion. Inclusion of CPF between 10 and 20% led to the optimum protein to starch ratio, allowing adequate protein texturization and creating product characteristics that could potentially mimic meat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.