Skin conductance response (SCR) is often used as an index of conditioned fear. SCR has been shown to be highly variable, and absence of SC reactivity is sometimes used as criteria for excluding data. It is, however, possible that low or no SC reactivity is the result of a distinct biological signature that underlies individual differences in SCR reactivity. This study examined neural correlates associated with the near absence of SCR conditionability. Archival data from 109 healthy adults aged 18–60 years were pooled. All individuals had participated in a fear conditioning protocol in a fMRI environment, during which two cues were partially reinforced (CS+) with a shock and a third cue was not (CS−). Using SCR to the conditioned stimuli and differential SCR (CS+ minus CS−), we created two groups of 30 individuals: low conditioners (defined as those showing the smallest SCR to the CS+ and smallest differential SCR) and high conditioners (defined as those showing the largest SCR to the CS+ and largest differential SCR). Our analyses showed differences in patterns of brain activations between these two groups during conditioning in the following regions: dorsal anterior cingulate cortex, amygdala, subgenual anterior cingulate cortex, and insular cortex. Our findings suggest that low or absent SCR conditionability is associated with hypoactivation of brain regions involved in fear learning and expression. This highlights the need to be cautious when excluding SCR nonconditioners and to consider the potential implications of such exclusion when interpreting the findings from studies of conditioned fear.
Electrodermal activity (EDA) is a measure of physical arousal, which is frequently measured during psychophysical tasks relevant for anxiety disorders. Recently, specific protocols and procedures have been devised in order to examine the neural mechanisms of fear conditioning and extinction. EDA reflects important responses associated with stimuli specifically administrated during these procedures. Although several previous studies have demonstrated the reproducibility of measures estimated from EDA, a mathematical framework associated with the stimulus-response experiments in question and, at the same time, including the underlying emotional state of the subject during fear conditioning and/or extinction experiments is not well studied. We here propose an ordinary differential equation model based on sudomotor nerve activity, and estimate the fear eliciting stimulus using a compressed sensing algorithm. Our results show that we are able to recover the underlying stimulus (visual cue or mild electrical shock). Moreover, relating the time-delay in the estimated stimulation to the visual cue during extinction period shows that fear level decreases as visual cues are presented without shock, suggesting that this feature might be used to estimate the fear state. These findings indicate that a mathematical model based on electrodermal responses might be critical in defining a low-dimensional representation of essential cognitive features in order to describe dynamic behavioral states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.