We define a generalization of virtual links to arbitrary dimensions by extending the geometric definition due to Carter et al. We show that many homotopy type invariants for classical links extend to invariants of virtual links. We also define generalizations of virtual link diagrams and Gauss codes to represent virtual links, and use such diagrams to construct a combinatorial biquandle invariant for virtual 2-links. In the case of 2-links, we also explore generalizations of Fox-Milnor movies to the virtual case. In addition, we discuss definitions extending the notion of welded links to higher dimensions.
S. Satoh has defined a construction to obtain a ribbon torus knot given a welded knot. This construction is known to be surjective. We show that it is not injective. Using the invariant of the peripheral structure, it is possible to provide a restriction on this failure of injectivity. In particular we also provide an algebraic classification of the construction when restricted to classical knots, where it is equivalent to the torus spinning construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.