The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3–5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.
Sparse aperture masking interferometry (SAM) is a high-resolution observing technique that allows for imaging at and beyond a telescope’s diffraction limit. The technique is ideal for searching for stellar companions at small separations from their host star; however, previous analyses of SAM observations of young stars surrounded by dusty disks have had difficulties disentangling planet and extended disk emission. We analyze VLT/SPHERE-IRDIS SAM observations of the transition disk LkCa 15, model the extended disk emission, probe for planets at small separations, and improve contrast limits for planets. We fit geometrical models directly to the interferometric observables and recover previously observed extended disk emission. We use dynamic nested sampling to estimate uncertainties on our model parameters and to calculate evidences to perform model comparison. We compare our extended disk emission models against point-source models to robustly conclude that the system is dominated by extended emission within 50 au. We report detections of two previously observed asymmetric rings at ∼17 and ∼45 au. The peak brightness location of each model ring is consistent with the previous observations. We also, for the first time with imaging, robustly recover an elliptical Gaussian inner disk, previously inferred via SED fitting. This inner disk has an FWHM of 5 au and a similar inclination and orientation to the outer rings. Finally, we recover no clear evidence for candidate planets. By modeling the extended disk emission, we are able to place a lower limit on the near-infrared companion contrast of at least 1000.
Kernel phase imaging (KPI) enables the direct detection of substellar companions and circumstellar dust close to and below the classical (Rayleigh) diffraction limit. The high-Strehl full pupil images provided by the James Webb Space Telescope (JWST) are ideal for application of the KPI technique. We present a kernel phase analysis of JWST NIRISS full pupil images taken during the instrument commissioning and compare the performance to closely related NIRISS aperture masking interferometry (AMI) observations. For this purpose, we develop and make publicly available the custom Kpi3Pipeline data reduction pipeline enabling the extraction of kernel phase observables from JWST images. The extracted observables are saved into a new and versatile kernel phase FITS file data exchange format. Furthermore, we present our new and publicly available fouriever toolkit which can be used to search for companions and derive detection limits from KPI, AMI, and long-baseline interferometry observations while accounting for correlated uncertainties in the model fitting process. Among the four KPI targets that were observed during NIRISS instrument commissioning, we discover a low-contrast (∼1:5) close-in (∼1 λ/D) companion candidate around CPD-66 562 and a new high-contrast (∼1:170) detection separated by ∼1.5 λ/D from 2MASS J062802.01-663738.0. The 5σ companion detection limits around the other two targets reach ∼6.5 mag at ∼200 mas and ∼7 mag at ∼400 mas. Comparing these limits to those obtained from the NIRISS AMI commissioning observations, we find that KPI and AMI perform similar in the same amount of observing time. Due to its 5.6 times higher throughput if compared to AMI, KPI is beneficial for observing faint targets and superior to AMI at separations ≳325 mas. At very small separations (≲100 mas) and between ∼250 and 325 mas, AMI slightly outperforms KPI which suffers from increased photon noise from the core and the first Airy ring of the point-spread function.
The James Webb Space Telescope's Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 µm wavelengths, and a bright limit of 4 magnitudes in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is 8 W2 magnitudes. AMI (and KPI) achieve an inner working angle of ∼ 70 mas that is well inside the ∼ 400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.