We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior.
Cisplatin is a chemotherapeutic agent that causes the irreversible death of auditory sensory cells, leading to hearing loss. Local administration of cytoprotective drugs is a potentially better option co-therapy for cisplatin, but there are strong limitations due to the difficulty of accessing the inner ear. The use of nanocarriers for the efficient delivery of drugs to auditory cells is a novel approach for this problem. Solid lipid nanoparticles (SLNs) are biodegradable and biocompatible nanocarriers with low solubility in aqueous media. We show here that stearic acid-based SLNs have the adequate particle size, polydispersity index and ζ-potential, to be considered optimal nanocarriers for drug delivery. Stearic acid-based SLNs were loaded with the fluorescent probe rhodamine to show that they are efficiently incorporated by auditory HEI-OC1 (House Ear Institute-Organ of Corti 1) cells. SLNs were not ototoxic over a wide dose range. Glucocorticoids are used to decrease cisplatin-induced ototoxicity. Therefore, to test SLNs’ drug delivery efficiency, dexamethasone and hydrocortisone were tested either alone or loaded into SLNs and tested in a cisplatin-induced ototoxicity in vitro assay. Our results indicate that the encapsulation in SLNs increases the protective effect of low doses of hydrocortisone and lengthens the survival of HEI-OC1 cells treated with cisplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.