Floating objects drifting in the surface of tropical waters, also known as drifting fish aggregating devices (DFADs), attract hundreds of marine species, including tuna and non-tuna species. Industrial tropical purse seiners have been increasingly deploying artificial man-made DFADs equipped with satellite linked echo-sounder buoys, which provide fishers with information on the accurate geo-location of the object and rough estimates of the biomass aggregated underneath, to facilitate the catch of tuna. Although several hypotheses are under consideration to explain the aggregation and retention processes of pelagic species around DFADs, the reasons driving this associative behavior are uncertain. This study uses information from 962 echo-sounder buoys attached to virgin (i.e. newly deployed) DFADs deployed in the Western Indian Ocean between 2012 and 2015 by the Spanish fleet (42,322 days observations) to determine the first detection day of tuna and non-tuna species at DFAD and to model the aggregation processes of both species group using Generalize Additive Mixed Models. Moreover, different seasons, areas and depths of the DFAD underwater structure were considered in the analysis to account for potential spatio-temporal and structure differences. Results show that tuna species arrive at DFADs before non-tuna species (13.5±8.4 and 21.7±15.1 days, respectively), and provide evidence of the significant relationship between DFAD depth and detection time for tuna, suggesting faster tuna colonization in deeper objects. For non-tuna species, this relationship appeared to be not significant. The study also reveals both seasonal and spatial differences in the aggregation patterns for different species groups, suggesting that tuna and non-tuna species may have different aggregative behaviors depending on the spatio-temporal dynamic of DFADs. This work will contribute to the understanding of the fine and mesoscale ecology and behavior of target and non-target species around DFADs and will assist managers on the sustainability of exploited resources, helping to design spatio-temporal conservation management measures for tuna and non-tuna species.
Man-made floating objects in the surface of tropical oceans, also called drifting fish aggregating devices (DFADs), attract tens of marine species, including tunas and nontuna species. In the Indian Ocean, around 80% of the sets currently made by the EU purse-seine fleet are on DFADs. Due to the importance and value of this fishery, understanding the habitat characteristics and dynamics of pelagic species aggregated under DFADs is key to improve fishery management and fishing practices. This study implements Bayesian hierarchical spatial models to investigate tuna and non-tuna species seasonal distribution based on fisheries-independent data derived from fishers' echo-sounder buoys, environmental information (Sea Surface Temperature, Chlorophyll, Salinity, Eddie Kinetic Energy, Oxygen concentration, Sea Surface Height, Velocity and Heading) and DFAD variables (DFAD identification, days at sea). Results highlighted group-specific spatial distributions and habitat preferences, finding higher probability of tuna presence in warmer waters, with higher sea surface height and low eddy kinetic energy values. In contrast, highest probabilities of non-tuna species were found in colder and productive waters. Days at sea were relevant for both groups, with higher probabilities at objects with higher soak time. Our results also showed speciesspecific temporal distributions, suggesting that both tuna and non-tuna species may have different habitat preferences depending on the monsoon period. The new findings provided by this study will contribute to the understanding of the ecology and behavior of target and non-target species and their sustainable management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.