Background: Automated cell-level characterization of the tumor microenvironment (TME) at scale is key to data-driven immuno-oncology. Artificial intelligence (AI)-powered analysis of hematoxylin and eosin (H&E) images scales and has recently been translated into diagnostics. However, robust TME analysis solely based on H&E data is bound by the stain's properties and by manual pathologist annotations, both in number and accuracy. In this study, we quantify the error introduced by pathologists' morphological assessment and mitigate this error by training AI-systems without manual pathologist annotations, using labels determined directly from IHC profiles. Methods: The work was carried out on 239 clinical NSCLC cases. CK-KL1, CD3+CD20, and Mum1 were used for defining carcinoma (CA), lymphocyte (LY), and plasma (PL) cells. For evaluation, representative regions were annotated by 3 trained pathologists. The workflow is based on co-registration of same-section H&E and IHC stained images with single cell precision. Cells were detected in H&E and labelled using rule-based algorithms that incorporated IHC information. This H&E data was used to train neural networks (NN). Results: (A) The inter-rater agreement of pathologists annotating on H&E is increased when information from registered IHC images is provided. (B) The concordance of pathologists on H&E-only compared to on H&E+IHC shows that pathologists miss or misclassify cells with a certain error. (C) NNs trained with IHC-based labels achieve similar performance for cell type classification on H&E as pathologists on H&E. Conclusion: This study demonstrates the value of combining histomorphological and IHC data for improved cell annotation. Our novel workflow provides a quantitative benchmark and facilitates training of accurate AI models for quantitative characterization of tumor and TME from H&E sections. A) Inter-rater agreement by metric, stain, and cell type By cell count, Pearson correlation By cell count, Pearson correlation By cell location, Krippendorff’s alpha By cell location, Krippendorff’s alpha Cell type H&E-only H&E+IHC H&E-only H&E+IHC CA 0.86 0.98 0.43 0.90 LY 0.88 0.99 0.21 0.76 PL 0.77 0.96 0.32 0.87 B) Performance of individual pathologists in H&E Against consensus in H&E+IHC Against own annotations in H&E+IHC Against own annotations in H&E+IHC Cell type By cell count, Pearson correlation By cell location, Precision By cell location, Recall CA 0.84 0.76 0.77 LY 0.78 0.70 0.60 PL 0.76 0.69 0.21 C) NN against annotator H&E+IHC consensus Cell Type By cell count, Pearson correlation CA 0.84 LY 0.92 PL 0.75 Citation Format: Thomas Mrowiec, Sharon Ruane, Simon Schallenberg, Gabriel Dernbach, Rumyana Todorova, Cornelius Böhm, Walter de Back, Blanca Pablos, Roman Schulte-Sasse, Ivana Trajanovska, Adelaida Creosteanu, Emil Barbuta, Marcus Otte, Christian Ihling, Hans Juergen Grote, Juergen Scheuenpflug, Viktor Matyas, Maximilian Alber, Frederick Klauschen. Immunohistochemistry-informed AI systems for improved characterization of tumor-microenvironment in clinical non-small cell lung cancer H&E samples [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 457.
Mathematical programs with vanishing constraints (MPVCs) are a class of nonlinear optimization problems with applications to various engineering problems such as truss topology design and robot motion planning. MPVCs are difficult problems from both a theoretical and numerical perspective: the combinatorial nature of the vanishing constraints often prevents standard constraint qualifications and optimality conditions from being attained; moreover, the feasible set is inherently nonconvex, and often has no interior around points of interest. In this paper, we therefore study and compare four regularization methods for the numerical solution of MPVCS. Each method depends on a single regularization parameter, which is used to embed the original MPVC into a sequence of standard nonlinear programs. Convergence results for these methods based on both exact and approximate stationary of the subproblems are established under weak assumptions. The improved regularity of the subproblems is studied by providing sufficient conditions for the existence of KKT multipliers. Numerical experiments, based on applications in truss topology design and an optimal control problem from aerothermodynamics, complement the theoretical analysis and comparison of the regularization methods. The computational results highlight the benefit of using regularization over applying a standard solver directly, and they allow us to identify two promising regularization schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.